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1. INTRODUCTORY DISCUSSION

1.1 INTRODUCTION

This dissertation examines structural radiation from a rib-stiffened plate of infinite

extent. Fluid loading is included on the upper surface of the plate while the lower surface is

unloaded, except for a time harmonic line force applied normal to the lower surface. Both

far-field and near-field solutions for the radiated acoustic pressure are presented.

Previous investigations of rib-stiffened structures have been limited to periodic

inter-rib spacing of either an infinite set of attached rib stiffeners or to a small finite set of

attached frames. Note, here and commonly throughout the literature, the terms beams,

frames, or simply ribs, are interchangeable with the term rib stiffeners. The formulation

presented here allows for one infinite set of periodically spaced stiffeners to be offset from

another infinite set of periodically spaced rib-stiffeners. The method can be extended to

many sets of ribs, all which have a different offset from one another. Hence, composite

sections of the plate may be designed, over any length scale, to possess non-periodic frame

spacing.

The motivation for investigating the structural radiation characteristics from a

sectionally non-periodic rib-stiffened flat plate was to determine whether the sound radiated

can be reduced, at selected frequencies, by judicious selection of the size of, and the

attachment location of, the rib-stiffeners. An application is in submarine hull design, where

a concern exists for reducing the near-field radiated noise created from a ribbed hull and

sensed by passive sonar listening devices.

I I I I I II I II II
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1.2 REVIEW OF LITERATURE

1.2.1 Periodic Structures

Acoustic radiation from stiffened plates has been investigated over the past thirty

years with a primary focus on far-field solutions of the radiated acoustic pressure from

periodically stiffened structures. Many authors' work has been based upon the concept of

propagation constants with the use of supports to model the effect of the attached rib-

stiffeners. Other approaches have used Fourier transforms and the construction of suitable

Green functions. A few papers have described the concept of normal mode localization for

plates that have randomly positioned rib-stiffeners.

The following pages will briefly outline some of the work that has been performed

in analyzing the effects of rib-stiffeners on sound radiation. The section has been included

to illuminate the type of mathematical analysis used to analyze stiffened structures. Though

each technique is described in short, the following section should provide a means for

contrasting previous investigations with the work presented in Chapter 2.

Romanov (1971) calculated the radiated power from an infinite plate due to a field

of random line forces driving the plate between two frames spaced a distance 21 apart and

symmetric about the origin. Both sides of the plate were fluid loaded. Green's functions,

which determined the acoustic radiation from a plate driven by a single unit harmonic point

force, were obtained. The Green function was convolved with a spatial correlation function

of random forces to yield the far-field sound pressure at a given far-field observation point.

The acoustic power was obtained, in the usual manner, by integrating the squared pressure

divided by acoustic impedance over the half-cylindrical integration space.

Romanov' paper discusses the effect of the plate's structural damping factor on the

level of the radiated power. Small structural loss factors will increase the contributions of

the frames to the radiated power, while large structural damping reduces the effect of the

frames. This effect has also been discussed by Gorman (1974); it is stated in his work that

increasing the structural damping in the plate reduces the rib contributions. Intuitively, the
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increased loss in vibrational energy, due to the plate's increased structural damping, implies

fewer rib-stiffeners will participate significantly to the radiation field, since ribs far away

from the applied force will not be excited by flexural energy.

In typical engineering applications, the structural loss factor cannot be substantially

changed, so although the effect is noted it is unlikely that it can be exploited.

Using an approach similar to one taken here, Evseev (1973), determined the far-

field radiation from an infinite thin plate with attached frames periodically spaced at a

distance L. The fluid-loaded plate was driven by a harmonic point force. The effect of the

attached frames was modeled as an unknown reaction force applied at each attachment

location. Newton's law related the forces produced by the beams to the plate's

displacement. The beams were allowed to have mass and bending stiffness properties, but

not rotational stiffness.

The forces acting on the plate were assembled into the differential equation

governing the stiffened plate's motion. Fourier transforms were then employed and the

plate's response in the transformed domain, with the aid of Poisson's summation formula,

was obtained. The algebraic manipulations required to explicitly solve for the wavenumber

response were later adapted by Mace (1980a) and expanded upon here in the present

analysis.

Asymptotic analysis was used-specifically, the method of stationary phase-to

approximate the far-field radiated pressure. The numerical results given by Evseev (1973),

as Garrelick (1975) states, were in error, though the formulation appears correct.

Evseev notes that the frames can generate large magnitude wavenumber

components at certain wavenumbers which are less, in absolute value, than the acoustic

wavenumber. The propagation velocity of these components is greater than the acoustic

velocity in the fluid. Hence, these large wavenumber components become efficient

radiators of sound.
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Solutions for the free and forced vibration of a periodic rib-stiffened infinite plate

are presented by Rummerman (1975). The paper does not include fluid-loading effects.

The frames were allowed to exert both line forces and line moments onto the plate.

A plane wave excitation is applied to the plate, that is, an external pressure is applied which

is time and spatially harmonic in the plane of the plate. Fourier transforms are employed to

solve, term by term, for the spectral response of the ribbed plate. By introducing the

Poisson summation formula, an explicit equation for the spectral velocity response is

obtained. The physical velocity was found by analytical evaluation of the Fourier inversion

integral.

Garrelick (1975) showed that Evseev's spectral expressions involving infinite

summations could be simplified if fluid-loading effects were neglected. That is, the infinite

summations given by Evseev converged and were expressable in terms of trigonometric

functions.

Results are given by Garrelick which show the far-field radiated pressure for a plate

stiffened by an infinite set of periodic frames over a wide band of frequencies. Also

shown, for comparison, are results obtain in an earlier paper by Garrelick (1974), which

considered only two and four attached frames equally separated and symmetric about the

excitation force.

Garrelick illustrates that the radiated far-field pressure from a two-framed, a four-

framed, and the plate that has an infinite set of frames, are comparable. That is, nulls and

peaks in the radiated acoustic pressure, and the slopes between these values, only differ

slightly from the finite framed configurations and the infinitely framed configuration. The

latter has, as one might expect, very well defined maxima and minima.

However, caution is advised in assuming the finite framed plate, as presented by

Garrelick, has radiation characteristics uniformly similiar to the infinitely periodic stiffened

plate. The results presented in the paper are for a single observation point in the acoustic

far-field directly above the applied point force. The variation of acoustic pressure
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horizontally along the surface of the plate, in the far-field, and certainly in the near-field,

may differ considerably for a small finite number of rib-stiffeners and an infinite set.

The first numerical calculations of the near-field acoustic radiation, found by this

author, from a fluid-loaded infinite plate having a finite number of attached periodic frames,

appear to be from Romanov's (1977) paper. The formulation cited allows the attached

beams to exert both forces and moments on the plate but, the numerical calculations given

were simplified for line force reactions only.

The inverse Fourier transform was obtained by a combination of the method of

steepest descents and numerical integration along additional contours arising from the

contour integral approach. The calculations were compared with results obtained by strictly

numerically integrating the inverse transform integral.

Romanov averaged the near-field radiated pressure over a large frequency interval

for each horizontal observation point along the surface of the plate. The interval was such

that the influence of any "resonance frequencies," due to the spacing between the attached

frames, was averaged into the non-resonance frequencies. In this manner, Romanov

obtained a broad band spatial distribution of the sound pressure along the plate's surface.

The spatial distribution of the frequency-averaged acoustic pressure along the

plate's surface showed well-defined and distinct peaks occurring above each rib-stiffener

and rolling off away from the point of excitation.

Mace (1980a) corsidered the far-field radiated pressure from an infinite fluid-loaded

plate having two sets of rib stiffeners, one set spaced an integer multiple of the periodic

spacing of the other set. A harmonic point force excitation was applied to the unloaded

surface of the plate and the far-field pressure was obtained by the method of stationary

phase. The frames did not exert moment reactions on the plate.

Mace's formulation parallels that of Esveev (1973) with the additional effect of

bulkhead frames placed at an integer multiple of the intermediate frame's periodic spacing.
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The solution for the plate's spectral wavenumber response-that is, an explicit

expression for the plate's response in the transformed domain-requires clever algebraic

manipulations of some finite and infinite summations. The finite summations arise from the

finite number of intermediate frames between bulkheads and the infinite summations arise

from considering all of the rib stiffeners.

The numerical results given by Mace have been used to verify, for the special case

of periodic rib spacing, the far-field radiation formula, equation (3.4), developed in

Chapter 3. Figure 3.1 and Figure 3.2, which are thoroughly discussed in Chapter 3,

compare both formulations and it is seen that there is exact agreement between the methods.

The results shown by Mace indicate that the far-field radiated pressure varies

considerably, depending upon the point of application of the point force. This dependence

was similarly seen by the author. Hence, to simplify the investigation, throughout the

analysis presented here, the applied line force remains fixed at the origin of the plate.

Later in the same year, Mace (1980b) and Mace (1980c) tackled the problem of an

infinite plate stiffened periodically by line supports, which could exert both force and

moment reactions, on a plate subjected to, respectively, a convected harmonic pressure and

a harmonic point or line force. The formulation presented in this series of detailed papers

differs considerably from that of Mace (1980a). The concept of propagation constant is

used, which has been employed by many authors, notably Mead (1970), and this type of

formulation will be discussed shortly.

Burroughs (1984) extended the formulation given by Mace (1980a) to analyze the

far-field radiation from a fluid-loaded infinite cylindrical shell having periodic and

identical circular intermediate ring supports and bulkhead supports. The equations of

motion for the cylindrical shell were based on Kennard theory, as were the ring supports,

which were modeled as stubby cylinders. The ring supports could impart reaction forces in

the radial direction only. The applied excitation was a point force and the far-field pressure
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was obtained asymptotically by the method of stationary phase. Numerical results

presented compared favorably with previous experimental measurements.

Eatwell (1982) gives a thorough development of the vibration of and the sound

radiation from an infinite fluid-loaded plate having a finite or infinite set of periodically

spaced attached rib-stiffeners. The stiffeners were allowed to exert moments; however, the

numerical results given are for force reactions only.

A Green's function integral is developed by Eatwell which gives the displacement

of any point on the stiffened plate's surface in terms of an unknown Green's function and

the known bending and rotational impedances of the attached beams.

A Fourier transform is then taken of the Green's function integral, and the force and

moment reactions of the frames are written in terms of their spectral impedances. The

unknown Green function is obtained by combining these spectral impedances with the

known transformed unribbed plate Green's function.

The far-field radiated pressure was obtained using the method of stationary phase

for both point force and line force excitation. In addition, using contour integration,

expressions were also derived for the plate's structural far-field.

The concept of propagation constants for the analysis of wave propagation in

stiffened beams and plates was introduced many years ago in a series of papers by Heckl

(1961), Ungar (1961), and Lamb (1961). The general formulation has been extended

considerably by others, notably Mead (1970, 1978, 1990), Maidanik (1976), and Crighton

(1981), to investigate flexural wave propagation and sound radiation from periodically

stiffened structures.

It is well understood that flexural waves can be attenuated, at certain frequencies,

by a frame impeding its motion as it travels along a stiffened plate. In Heckl's early

analysis, the fiames could bend and rotate. The problem of determining the effect of a

frame or beam on a traveling flexural wave reduced to determining transmission and

reflection coefficients, which varied with frequency, at the junctions between the frame and
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the plate. Heckl recognized that the physical velocity anywhere on the plate's surface could

be determined by considering only the velocity between two adjacent supports, or within a

"bay" separated by the supports. HeckI reached this conclusion by assuming the change in

the phase and the rate of decay in the plate's velocity-from one bay to an adjacent one, in

either direction-could be related, for a fixed frequency, to a constant. This constant was

called the propagation constant

The analysis showed that certain flexural wavenumbers could not propagate across

the frame-plate interface, and the frequency regions where this occurred were called stop

bands. Similarly, other bending wavenumbers would pass unattenuated, and these regions

were pass bands.

Ungar (1961) obtained the expressions for the reflection and transmission

coefficients at a beam-plate interface using classical elasticity theory. Continuity of

displacement of the plate and beam at the interface coupled the governing equations of

motion of the plate and beam. A traveling flexural wave on the plate was assumed to

impinge on the beam at the interface and the resulting deformation of the plate due to the

interaction was then obtained.

An infinite beam on equally spaced supports, which could be rigid or flexible, was

investigated by Mead (1970). This investigation determined that rigidly supported systems

are characterized by a single propagation constant while flexible supports generate two

propagation constants. The beam was not fluid-loaded.

Classical equations for the transverse displacement of a finite beam and the

prescribed boundary conditions at each support were used to obtain the displacement

between two adjacent supports. Propagation constants were then used to yield the

displacement anywhere along the supported plate's surface.

Mead noted that a convected pressure field, which travels at a subsonic velocity,

may generate waves which travel along the stiffened plate at supersonic velocites. He
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further notes that these supersonic traveling waves couple efficiently with an acoustic

medium and radiate sound.

Maidanik (1976) investigated the influence that fluid loading, and also a compliant

coating, have on the transmission and reflection coefficients determined earlier by Ungar.

Maidanik's analysis showed that certain flexural wavenumbers, which are heavily

attenuated in the absence of fluid loading, may be transmitted across the frame interface

when fluid loading is present.

Crighton (1981) continued to investigate the effect fluid loading has on flexural

wave transmission across a single rib stiffener. The analysis determined that the fluid

provided a mechanism which was able to "mend" a structural discontinuity presented to a

traveling flexural wave by a rib interface. Over certain frequency bands tis mending would

be complete and, unlike the unloaded case where the impecace was infinite, the flexural

wave would pass unimpeded.

The method of space harmonics was used by Mead (1978) to determine an

approximate expression for the sound power radiated by an infinite plate which is

periodically supported and excited by a uniform convected pressure field.

Mead showed the fluid loaded plate's displacement can be determined by expanding the

displacement within a single bay by an infinite summation of space harmonics.

In a set of papers, Mace (1980b and 1980c) continued the work of Mead (1978)

and considered far-field radiation from periodically supported fluid-loaded plates which

were excited, respectively, by a convected pressure field and a point or line force. The

approach in both papers was an infinite plate with supports that introduced both force and

moment boundary conditions.

Mace (1980c) shows that when fluid loading is neglected, the periodically stiffened

plate's displacement, due to line force excitation, may be explicitly obtained using contour

integration. For an applied point force, or with the inclusion of fluid loading, numerical

integration is necessary.
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Mace presents an interesting rule-of-thumb formula for determining the frequency

range for which a periodically stiffened plate can be modeled as an orthotropic plate. Mace

(1980c, p.497) states, "whenever the stiffener separation is less than one-third of the

plate's bending wavelength, then the ribbed plate can be modeled as an orthtropic plate."

For typical plate configurations, this formula implies low frequency regions.

In a recent paper, Mead (1990) obtains the sound power radiated, due to a uniform

convected pressure field, from a plate which has periodically spaced ib-stiffeners in two

orthogonal directions. The formulation is developed with and without fluid loading and

employs two-dimensional space harmonics, as earlier introduced by Mead (1971).

Mead concludes that acoustic radiation is fundamentally determined by the periodic

geometry of a stiffened plate. This conclusion is supported by the research in Chapter 2 and

Chapter 3 of this study. The structural mass and the bending and rotational stiffness

properties of the attached rib-stiffeners alter the overall magnitude of the radiated acoustic

pressure. It is the inter-rib spacing which determines the frequencies where the stiffened

plate radiates strongly and weakly.

1.2.2 Non-Periodic Structures

The first departure from the analysis of wave propagation and of sound radiation

from plates having strictly periodic spacing of stiffeners, either as attached frames or

supports, appears in the work of Bansal (1979).

Bansal considered an infinite beam, which was unloaded and composed of identical

finite beam segments. Each segment rested on non-periodic, though identical, supports.

Within a given segment, the mean of the different lengths between supports was obtained.

The averaged length was then used to assume periodic stiffening within the beam section

and, using analysis similar to Mead (1970), the free flexural wave motion over the entire

plate was determined.
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This work differs considerably from the formulation given in Chapter 2.

Specifically, the rib-stiffener positions are precisely specified and no averaging of the inter-

frame spacing occurs. Secondly, one set of rib-stiffeners, in the analysis presented by the

author, may differ from the other set of rib-stiffeners. These differences are significant. As

will be shown, the wavenumber response of a true non-periodic rib stiffened plate cannot

be easily approximated using a pseudo-periodic spacing.

Bansal (1979, p.48) states, "The sound power radiated from a disordered beam (or

plate) is thus expected to be higher (than from a periodic plate)." Although the applied

excitation in Bansal differs from the line force used in Chapter 2, the conclusion that sound

radiation from a disordered beam is higher than that from a periodic beam is not supported

by the present investigation. For the simple case of two sets of rib-stiffeners, one set offset

from the other set, at certain frequencies the disordered system radiates less sound, both in

the far-field and near-field, than the periodic ordered system.

Though the problem has not yet been mathematically posed for a fluid-loaded, rib-

stiffened plate, some investigation into the vibration of a disordered system has been done

by Hodges (1982 and 1983).

These papers discuss the phenomenon of Anderson localization, or the confinement

of vibrational energy due to backscattering of traveling flexural waves from irregularly

positioned scatters. Hodges (1982) notes that no physical system is ideally periodic and

even a small difference in periodic spacing can yield normal mode localization, or vibration

confinement, over a scale of significant length. Essentially, normal mode localization may

be considered as an additional mechanism for damping the spatial vibration of a stiffened

system. Hence, the spatial vibrations of a rib-stiffened structure will decay with distance

from the point of excitation due to both structural damping and vibrational confinement.

A simple experiment was performed by Hodges (1983) which consisted of small

masses positioned on a thin wire such that the spacing between each mass varies by 2% or

less. Normal mode localization was illustrated by comparing the experimentally measured
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mode shapes of the fixed wire with irregularly spaced masses with theoretical predications.

Agreement was good, though it was pointed out that the localization phenomenon requires

a system to have extended disorder.

1.3 DESCRIPTION OF THE PROBLEM FORMULATION

Figure 1.1 is a conceptual illustration of the fluid-loaded, rib-stiffened infinite flat

plate under in ;estigation. The plate is fluid-loaded on the upper surface only; the lower

surtace is in vacuo. An external time harmonic line force, of magnitude F0, is applied

perpendicularly to the plate's lower surface.

Two sets of attached rib-stiffeners are shown and both are spaced periodically with

a distance denoted t. One set of stiffeners is offset from the other set by a distance denoted

as A. The stiffeners composing a given set are identical. That is, they have the same cross-

sectional areas and material properties. The properties of one set, though, can differ from

that of the other set.

Z

FLUID A Y
P,(X,0)I__ II /_.I

&" RIB 

F0

Figure 1.1. Geometry of flat plat showing two sets of rib-stiffeners and
the external forces acting on the stiffened plate.
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The elastic plate is of uniform thickness, h. It is isotropic, homogenous, and its

transverse motion is assumed to be governed by Euler-Bemoulli's equation of motion.

Therefore, for the excitation frequencies of interest, it is assumed the flexural wavelengths

are greater than the plate's thickness. This implies that rotary inertia and shear deformation

effects within the plate can be neglected, as indicated by Mindlin (1951). The rib-stiffeners

are modeled similarly, using classical transverse bending of a beam without rotary inertia

and shear deformation. The plate has structural damping which has been included by

allowing for a complex Young's modulus through use of a loss factor Ti.

The rib-stiffeners exert reactive forces upon the plate, but not angular moments.

Eatwell (1982), Mace (19FOb), and others have included angular displacements or rotations

of the rib-stiffeners and the extension is not difficult. For simplicity, though, this analysis

neglects angular displacements of the stiffeners and the angular moments their

displacements produce.

Also, to simplify the formulation the applied excitation is a line force. This forcing

precludes any spatial variation of the plate's displacement in the direction parallel to the

stiffener, or in the y-direction shown in Figure 1.1. As will become apparent in Chapter 2,

the algebraic manipulations of the Fourier-transformed differential equation of motion are

likely to appear awkward at first. Retaining spatial variations in the y-direction, by

considering an applied point force, would make these calculations appear that much more

cumbersome. Once understood, there is no mathematical difficulty in extending the

formulation to point force excitation, and the extension is given in the Appendix. For line

force excitation, the rib-stiffeners act only as structural masses attached to ti.e plate; to

include bending stiffness, an applied point force must be used.

The coordinates are such that the z-direction is normal to the plate's upper surface

and the stiffeners lie perpendicular to the x-direction and parallel to the y-direction.

The geometry of the periodic spacing I for each set of rib-stiffeners and the offset

of additional sets of stiffeners to other sets is illustrated in Figure 1.2. Four rib-stiffener
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sets are shown, three of which have offset Al, A2 , and A3. The are no restrictions on the

size of t or on the value of the offset except that any offset must be less than the distance 1.

Further, stiffeners can be of any size or of any elastic material. It is apparent that a plate

may be configured to have repeating sections, of length L, which have different and non-

periodic rib spacing.

I A

L i '- A2 idlI

I II I I4 ----- A

If I I IIu L

Figure 1.2. General plate configuration showing additional sets of
rib-stiffeners of different size and different offset.

It should be noted here that each additional rib set introduces an additional equation

which must be solved simultaneously with equations involving the other rib sets, in the

transformed wavenumber domain, to obtain an explicit solution for the stiffened plate's

wavenumber response. For a large number of different rib-stiffeners, the algebra would be

cumbersome, and a computational symbolic manipulation program would likely be

necessary.

The geometrical, material, and acoustic fluid properties used for the numerical

calculations presented in Chapter 2, Chapter 3, and Chapter 4 are given in Table I.1. The

geometrical properties were obtained from unclassified material, Schloemer (1981), relative

to submarine pressure hull design. Two configurations are considered, and are denoted as

the BASELINE design and an ALTERNATE design. Both configurations will be compared

to each other and with an unstiffened plate, which is simply refered to as an UNRIBBED
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configuration. Throughout the chapters, as an aid to the reader, the configurations will be

capitalized as shown above.

Table 1.1. Geometric, material, and acoustic properties

Geometrical Propedes:
Plate Thickness (h) 0.0254 m (1.0 in.)
Periodic Rib Spacing (1)

Baseline 0.6035 m (24 in.)
Alternate 0.30175 m(12 in.)

Cross-Sectional Rib Area (a x b)
Baseline 0.004215 m2 (6.5 in.2 )
Alternate 0.001935 m2 (3.0 in.2 )

Material Perti~es:
Young's Modulus (Steel, E) 19.5 1010 Pa (27.7 106 psi)
Modulus Loss Factor (Steel, Ti) 0.02
Density (Steel, ps) 7.7 103 kg/M3 (475 lbf/ft3)
Poisson's Ratio (Steel, v) 0.28

Fluid Pmrcs:
Density (Water, Po) 1.0 103 kg/m3 (62 lbf/ft3)
Sound Speed (Water, co) 1.5 103 m/s (4921 fW/s)

As Table 1.1 indicates, the ALTERNATE configuration has a periodic rib spacing

that is exactly half of the periodic spacing of the BASELINE configuration. The cross-

sectional area of the ALTERNATE rib-stiffeners is approximately half that of the

BASELINE stiffeners, and both configurations have steel rib-stiffeners.

Unless otherwise stated, the BASELINE and ALTERNATE designs have identical

rib-stiffeners which are spaced periodically along the plate. That is, the offset for both

designs is one-half the distance L. Hence, these designs simply describe a fluid-loaded

infinite plate which has one set of identical rib-stiffeners which are spaced periodically with

distance A = /2.

Comparisons are made, in Chapters 2, 3, and 4, for an offset which deviates, by

some percentage amount, from the periodic spacing achieved for A = /2. For example, a
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"20% shifted" BASELINE configuration implies a 20% change in the offset from the one-

half . spacing, such as

A L + OA4= 1I2A

Throughout the investigation, the magnitude of the line force is lkN (224 lbf), and

the force is applied directly beneath a rib-stiffener at the plate's origin. The frequencies of

excitation, except for swept frequency analysis, were chosen as 250 Hertz, 500 Hertz,

1000 Hertz, and 2000 Hertz. All of these frequencies are below coincidence for the plate

investigated.

Light fluid loading (Air) was considered only to verify certain formulas developed

in Chapter 2 which are more difficult to validate if fluid loading is included. Unless

otherwise stated, all other parameters remain fixed throughout the investigation.

Exponential Fourier transforms have been used to transform the governing

differential equation of motion into the wavenumber domain, k. It is assumed the

transforms are well-defined and exist over the domain of integration.

The rib-stiffeners are assumed to act over an infinitely narrow region of the plate.

Hence, their point of application can be modeled by a Dirac delta function.

The harmonic time dependence of the plate's displacement and the radiated acoustic

pressure will be suppressed throughout the analysis.

1.4 ORGANIZATION OF CHAPTERS

Chapter 2 develops the equation of motion for the fluid loaded rib-stiffened plate

and, after transforming this equation term by term, presents the solution for the

plate's wavenumber response, or spectral response, in the transformed domain. A single

rib offset is considered in the formulation.
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A complete investigation of the periodic rib-stiffened plate's wavenumber response

is given. Key wavenumber relationships are developed; they specify wavenumbers that

yield maximum and minimum spectral response.

The chapter culminates with a discussion of frequency formulas, which can be

obtained from the key wavenumber relationships. These formulas give, for a fixed

observation point and for an applied excitation beneath a rib, the excitation frequencies that

determine maximum and minimum far-field radiated pressure.

Chapter 2 presents the major contribution this dissertation has to the field of

structural acoustics. The manipulations necessary to obtain an explicit expression for the

wavenumber response of a rib-stiffened plate, which has stiffeners with arbitrary offset,

has not been previously achieved.

A straightforward application of the method of stationary phase, used to obtain the

far-field radiated acoustic pressure, is given in Chapter 3. For line force excitation, the

stationary phase formulation shows that the far-field pressure is a function of radial stand-

off distance, R, and polar angle, 0. The far-field pressure due to a point force is given in

the Appendix. The radiated far-field pressure is compared to numerical results given by

Mace (1980a) and agreement is exact.

Numerical calculations are presented for the radiated far-field sound pressure level,

at a fixed observation position, for changes in frequency and for changes in offset at a fixed

frequency. Also shown are the plate's directional radiation characteristics at fixed

firequencies of excitation. It is shown that non-periodic rib spacing may produce highly

directional unsymmetric radiation patterns.

In Chapter 4, numerical integration has been used to obtain the near-field acoustic

pressure radiated from the rib-stiffened plate. A Romberg integration technique was

chosen, since it was found to reduce the number of integrand function evaluations

necessary for integral convergence. Fairly lengthy computational times were required on a

shared IBM 6000 RISC-based computer system to obtain numerical results.
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Results are given for the radiated near-field sound pressure level, at a distance of

1/3 meter from the plate's surface, for changes in frequency. Also shown is the variation of

acoustic pressure along the horizontal surface of the plate at fixed frequencies. It will be

seen that the rib-stiffeners can significantly increase or decrease the near-field radiated

sound pressure level.

The chapter concludes with a detailed analysis of the integrand and Fourier

inversion integral which yields the radiated acoustic pressure. It is shown that a small

change in offset which allows the plate to have non-periodic stiffener spacing may eliminate

spectral components that are strong radiators of sound.

Chapter 5 summarizes the significant findings presented in the previous chapters

and reiterates the key frequency relationships uncovered during the analysis. A procedure is

outlined for reducing, at a fixed frequency, the far-field and near-field radiated pressure.

Many recommendations for future investigations and extensions of the formulation are

given.
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2. SOLUTION AND ANALYSIS OF THE STIFFENED
PLATE RESPONSE IN THE TRANSFORMED

WAVENUMBER DOMAIN

2.1 THE STIFFENED PLATE EQUATION OF MOTION

The motion of the rib-stiffened fluid loaded plate, as depicted in Figure 1.1, is

assumed to be governed by the Euler-Bernoulli differential equation of motion for a thin

infinite flat plate and is subjected to external applied pressures as shown below.

a~2 a2 '2

D 2+ -2) w(xy) - mo 2w(x,y) Applied Pressures (2.1)

where D is the plate's rigidity, w(x,y) is the transverse plate displacement, m is the plate's

mass per unit area, Co is the applied excitation frequency.

Since the line force excitation precludes any spatial variation of the plate's

displacement in the y-direction, and the applied pressures are specified, equation (2.1) can

be rewritten as

Dd4 w(xy) - mo 2 w(x) = Pc(x) -Pa(x) - [Pl(x)+P2 (x)+ ... PN(x)). (2.2)

The external pressure due to the applied line force is denoted Pe(x) and the acoustic

pressure acting on the upper surface of the plate is Pa(xO). The total pressure exerted

by all of the sets of rib stiffeners are, PI(x), P2(x), ... ,PN(x).

Notice, as mentioned in Chapter 1, terms involving rotary inertia and terms

involving shear deformation are not included in equation (2.2). Timoshenko (1955)

discusses these terms and their incorporation into the classical equation of motion

governing beam and plate vibrations.

The harmonic time dependence, e-iW(, chosen negative by convention, will be

suppressed throughout the analysis.
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2.2 FOURIER TRANSFORM OF THE EQUATION OF MOTION

Equation (2.2) is transformed, term by term, using Exponential Fourier transforms,

which are defined as

W(k) = 1 w(x)e-ik dx
-0

and
WX=-1-00w(x) = j i(k)eikx dk.

-00

The spatial transform variable, k, has physical significance as the wavenumber, and

the wavenumber response or spectrum, W(k), is simply the stiffened plate's response in the

wavenumber domain. It is assumed throughout the analysis that both transforms exist over

their entire domain of definition.

Equation (2.2) can be immediately transformed and the result is given as

(DO -mO2 ) - (k) -Pa(k) - (P1(k) + P2(k) + ... PN(k)) (2.3)

where the - denotes the transformed expressions.

The transforms of the different applied pressures will be obtained in a sequential

fashion in the same order, left to right, as shown above.

The transform of the external pressure due to the applied line force of magnitude

F0, which acts along a line parallel to the rib-stiffeners at some location xo, is simply

00

Pe(k) fI Fo S(x-xo) e- 00 dx = F0 e- ikxO. (2.4)
-00

The acoustic pressure, Pa(x,O), applied to the plate's upper surface is determined,

in the usual manner, through the acoustic wave equation and the condition of continuity of

velocity at the interface between the plate and the fluid medium.
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The development of the transformed response of the fluid loading pressure will be

brief since the coupling of an acoustic fluid with an infinite flat plate is well-documented

and understood.

The two-dimensional wave equation is written, assuming harmonic time

dependence of the acoustic pressure, as

j)2 j)2 __W2

;;2+;E20 Pa(x,z) = - Pa(x,z). (2.5)

The above equation is transformed, with respect to x, treating the z dependence as a

parameter. The result of the transform yields second-order differential equations, in the

parameter z, defined in two wavenumber regions
d2 Pa(z;k) 2

dpz + (k2 - k2) Pa(z;k) = 0 IkI < ko, (2.6a)

and

d2Pa(z;k) 2 )
dz2  (k2

1  Pa(z;k) = 0 IkI k ko, (2.6b)

where k0 = 2, the acoustic wavenumber.

The general solution to equation (2.6a) and equation (2.6b) is known, and with the

condition that the acoustic pressure must be bounded and travels outward yields

Pa(z;k) = AI(k)e IkI <k0  (2.7a)

and

Pa(z;k) = A2(k)e "Y - Ik > k0  (2.7b)

where AI(k) and A2(k) are unknown wavenumber-dependent coefficients.
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The unknown coefficients are determined by the boundary condition at the interface

of the plate with the acoustic fluid. The fluid is assumed ideal, and the boundary condition

is given, after transforming the linearized momentum equation, at the plate's upper

surface as

dPa(z;k) POA(k). (2.8)

Solving for the coefficients AI(k) and A2(k) yields the general solution to equations

(2.6a,b)

Pa(z,k) = -iPo (k) e Ik I ko (2.9a)

and 
k 2

Pa(z,k) - - vO k e - k I k I> ko. (2.9b)

Substituting these values into the inverse transform integral for the physical radiated

pressure from the fluid-loaded stiffened plate's surface gives

Pa(x,z) =-o e Z eikxdk. (2.1Oa)

Pa(xz) = -e eikxdk. (2. 1 Ob)

IkI>'ko 
k

The transformed acoustic pressure acting on the surface of the plate is, from

equations (2.9a,b),
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Pa(Ok) = -ipo(0 2%(k) I k I < kO, (2.11 a)

and

Pa(O,k) U -poo2%(k) I k I_> ko. (2.1 Ib)

Equation (2.2) depicts N-sets of attached rib stiffeners acting on the fluid loaded

plate. Without loss in generality, for the formulation here, only two sets of rib stiffeners

will be considered. As mentioned in Chapter 1, the rib stiffeners, for line force excitation,

act only as structural masses attached to the plate. A point force allows the ribs to have

bending stiffness and this extension is given in the Appendix.

The reactive force produced by an idealized single rib-stiffener acting over an

infinitely narrow region of the plate is simply equal to the product of the mass and

acceleration of the stiffener. It is assumed the rib motion, u(x), varies harmonically with

time, and each set of stiffeners produce a total reactive pressure acting beneath the plate

PI(x) = - 7 mj' co2 uj(x) 8(x-nt), (2.12a)
n-

and
0O

P2(x) = - I m2' C02 u2(x) 8(x-(nt+A)), (2.12b)
n=.(

where mI' and m2' are the mass per unit length of each of the rib stiffener sets. The

displacement of each set of rib stiffeners is denoted by ul(x) and u2(x).

Both of the above equations are transformed, with respect to x, and, assuming the

summations are uniformly convergent, the order of integration may be interchanged with

the summations, obtaining the following
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PI(k) = -ml' o2 I w(nt) e-ikni, (2.13a)
n= - .oo

and

P2(k) = -m2' 0) 2 w(nI + A) e-ik(nl+A). (2.13b)

n-(213b)

Notice that the plate's displacement, w(nt) and w(nj+A), has been substituted for

the displacement of the rib's displacement, u(nk) and u(rt+D), since the plate and ribs are

rigidly attached at Xn = nt and Xn = nt+A.

Also notice that equations (2.13a,b) are not in terms of the transformed variable, k,

but are in terms of a physical displacement variable, rj and nI+A. By introducing a new

transformation domain, denoted the C domain, manipulations may be performed to write

equations (2.13ab) in terms of the wavenumber, k.

The manipulation is accomplished by introducing the transform shown below

a*

x= L j v()ei(nt)d . (2.14)

Substituting equation (2.14) into equations (2.13ab) gives

f1 k = (C eint~k) dC, (2. 15a)

P)2(k) I - J' 2() (  ei( t+AX -k) dC, (2.15b)

Poisson's Summation formula, Stakgold (1979), which is an essential relationship

required to proceed and is shown in a general form below, is introduced into equations

(2.15a,b)

ei n' = 27c X8(t-2tn)
nhip, n2. ca r

Using the above relationship, equations (2.15ab) can be rewritten as
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00

P m(k)- ( 8(C-(k+- -- ))} d, (2.16a)

P2(k) =2z e 6(-(k4-1- dC, (2.16b)
w(i) r. t, n 2

Interchanging the order of the summation and integration, the integrals of equations

(2.16a,b) can be evaluated exactly, yielding

fl00P(k) = 0)2 Y % (k + 2 2m (2.17a)
n=-_..

P2(k) = *, n--- (2.17b)
t n=-e0 T

The following quantities are defined to simplify the algebraic manipulations

required to explicitly solve for the wavenumber response, W(k), of the stiffened plate. It

will also be seen that these quantities are key parameters which describe the behavior of the

radiated acoustic pressure.

m'o2 m0 2
2__ 1 1

I t t

Note that k, is a constant wavenumber corresponding to the periodic inter-rib

spacing, 1. The other terms, KI and K2, represent the dynamic mass of the attached rib

stiffeners. Equations (2.17ab) can now be rewritten as

00

PI(k)--KI 7 W(k+kin) (2.18a)

00

! 2(k) =K2 Y, Wk + kn)eicinAk (2.1 8b)
n=-0eo
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Substituting all of the transformed external pressures, equation (2.4), equations

(2.1 la,b) and equations (2.18a,b), back into equation (2.3) yields the fluid-loaded

stiffened plate's wavenumber response, though not in an explicit form.

(Dk4 - mO) ;(k) = Foe-ikxo + ipoo;(k)

-KI Y %(k+kin)-K2 I (k+kn)eik"A  IkI<k0, (2.19a)
n=- n---o

(Dk4 - m o2) W(k) = F0e-ikxO + poo2Z(k)

@0 - 0

-KI I W(k + ktn)- K2 I Wk + kin) eil nA  IkI 2_ko. (2.19b)
n=--. n=-

Equations (2.19ab) may be further simplified by introducing the following

expressions

S(k) =

F 4) - Y-)

F(k)= S(k) f(k)

where kb is the free in vacuo plate wavenumber.
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With the above substitutions, equation (2.19) can be written in an simplfied form as

00 o

i(k) = F(k)-KIY(k) W i(k + nk.)-K2Y(k) Y %(k + nkj)eikt hA. (2.20)
n-._ n=-0c

Note that if additional sets of rib stiffeners, of different size and offset, had been

retained, equation (2.20) would simply become

W(k) = F(k) - Y(k) { T (KI -,- K2 einktA +
n --

+ KN einkltAN-1) w(k + nk)}. (2.21)

2.3 EXPLICIT SOLUTION OF THE WAVENUMBER RESPONSE

The difficulty now lies in determining an explicit expression for the plate's

wavenumber response, (k). That is, it is necessary to manipulate equation (2.20) such

that the summations which contain the wavenumber response i(k + kin), may be written

in terms of known quantities.

The algebraic manipulations presented below perform two functions. First, they

correctly solve for the immediate problem of obtaining an explicit wavenumber response

for a fluid-loaded plate having two sets of rib stiffeners. More importantly, they show a

new technique for solving for the acoustic radiation from a non-periodic, rib-stiffened

structure. This new technique represents a significant contribution to the field of structural

acoustics.

The manipulations will be performed for two sets of rib stiffeners and it will be

seen that the two sets generate two independent equations in two unknowns. The

unknowns are summations involving v(k + 4n) and (k + kjn)ei#thA, which must be

solved simultaneously. Nuttall (1992), who became quite interested in the problem,
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assisted in expanding the solution so that any number of rib-stiffener sets could be

considered, and introduced a simplifying notation which will be adopted here.

The following summation expressions are defined, where the subscript p denotes

the integer value in the summation exponent.

@0

Wp(k) I % (k + nkt ) ik nA p ,

Fp(k) M .F(k + nkj) eiktna p,

0rp(k) a I" Y(k +nkt) eiktnAp.
!1=-o

Each summation defined above has the following key property:

Gp(k + kjm) = Gp(k) e-'iktAP.

This property requires that the summations be infinite and can be understood by

considering the p = 0 case. For this case, it is readily seen that increasing the argument of

the function being summed by an integer does not change the summation since the function

is being summed over all integers.

The expression for the summed plate response is substitued into equation (2.20)

and yields the following expression

w(k) = F(k) - K1Y(k)W0 (k) - K2Y(k)Wl(k). (2.22)

To explicitly solve for W(k) in equation (2.22), let k = k + k1m, and sum both sides

of equation (2.22) over all m, which yields, considering the above relationship,

W0(k) = FO(k) - KIYO(k)W0(k) - K2YI(k)Wj(k). (2.23)
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Returning to equation (2.22), both sides are now multiplied by eikim, the

substitution k = k + ktm is made, and both sides are summed over all integers m, which

yields

WI(k) = F1 (k) - KiYI(k)W0 (k) - K2Y0 (k)WI(k). (2.24)

Equation (2.23) and equation (2.24) are solved simultaneously for W0(k) and

WI(k), which gives

Wo(k) = Fo(k) K2 Yj(k)
(k+KiY 0(k)) I+KIY0 (k)

Fl(k)+K1 (F(k)Yo(k)-Fo(k)Y(k)) I (2.25a)
1+(KI+K 2 )Yo(k)+KIK 2(Y2(k)-Y (k))Y-. (k)

WI(k) = FI(k)+KI(F(k)Yo(k)-F°(k)YI(k)) (2.25b)
1+(K1 +K2)Y0(k)+KI K2(Y2(k)-YI (k)Y-I (k))

Substituting equations (2.25ab) back into equation (2.22) gives the explicit

wavenumber response of the fluid-loaded, infinite flat plate having two sets of attached rib

stiffeners

r(k) = F(k) - Y(k)*

{ K2(1 +KI Y0(k))F 1 (k)+K (I+K 2 Y0(k))F0(k)-KI K2 (F0(k)Y (k)+F (k)Y I (k))

1 +(KI+K 2)Y0 (k)+KIK2 (Y2(k)-Y 1 (k)Y-I (k))

(2.26)

It may be easily shown that this result includes previously obtained results for a

single set of periodically spaced ribs. For the special case of identical rib stiffeners spaced

periodically with distance L, for example K2 = 0.0, equation (2.26) simplifies to

Y(k)KIFo(k)
(+KIYO(k) (2.27)

Equation (2.27) is identical to that which was obtained by Mace (1980a).
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Each additional set of rib stiffeners introduces an additional summation, Wp(k),

which must be solved simultaneously with the other summation terms, to obtain the explicit

form of the plate's wavenumber response. For example, ten independent rib-stiffener sets,

nine of which have different offset, would generate ten equations in ten unknowns,

Wo(k),W(k), .... ,W9(k).

Hence, for a large number of rib sets, the algebra becomes unwieldy, and a

symbolic manipulation program, such as MACSYMA or MATHEMATICA, would be

needed to obtain an analytical solution for the wavenumber response. A very large number

of different rib-stiffener sets may always be solved numerically, as discussed in Nuttall

(1991).

The general wavenumber response given by equation (2.26) collapses predictably

to equation (2.27) by letting, for example, K1 or K2 be zero, or allowing the offset, A, to

be zero or half the periodic spacing, L. If both K, and K2 are set to zero, then equation

(2.26) simply becomes the wavenumber response of a unribbed fluid-loaded, infinite

flat plate.

2.4 ANALYSIS OF THE TRANSFORMED

WAVENUMBER RESPONSE

Equation (2.26) is an involved expression. To analyze it in general, with the many

variables that contribute to the plate's wavenumber response, would be a lengthy and

officult task. Therefore, in order to bound the analysis, certain parameters have been held

fixed throughout the investigation. All of the material properties and the fluid properties,

except for certain air-loading special cases, remain constant as specified in Table 1.1.

The excitation is applied at the plate's origin, x0 = 0.0, throughout, and four fixed

frequencies of excitation are considered - 250 Hertz, 500 Hertz, 1000 Hertz, and 2000

Hertz - though swept frequency analysis is also included.

MEMNO
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Holding the above-mentioned parameters fixed, however, still does not ease the

difficulty in mathematically evaluating equation (2.26) in detail. Of interest are the

wavenumbers at which the wavenumber spectra of the stiffened plate have maxima and

minima. It was determined, therefore, to quantitatively investigate equation (2.27), the

periodic configuration. Next, equation (2.26) could be qualitatively analyzed by changing

the offset by a small prescribed amount. Keeping this in mind, the analysis begins with a

three-dimensional perspective view of the UNRIBBED wavenumber response.

2.4.1 Periodic Wavenumber-Freauene Figures

A descriptive presentation of the wavenumber-frequency response of the

UNRIBBED, BASELINE, and ALTERNATE stiffened plate configurations is given in this

section. The section is meant to provide an overall general description of features seen in

the spectral response of a periodically stiffened plate. A detailed discussion and analysis of

the features illustated begins in Section 2.4.3.

Figure 2.1 shows the normalized magnitude of the UNRIBBED plate's

wavenumber, or spectral, response within the frequency range 250 Hertz to 5,500 Hertz

and with wavenumber range -40 m"-1 to 40 n-l. The response has been normalized by the

maximum modulus in wavenumber for a given frequency.

Displayed in Figure 2.1 is the effect of radiation damping on the plate's response at

the acoustic wavenumber, k0. Also apparent is the dispersive nature of the fluid-loaded

flexural wavenumber, kfl, and the large spectral response at this wavenumber. Radiation

damping, which is seen as a null in the spectral response and indicated by arrows in Figure

2. 1, varies linearly with increasing frequency. Whereas, the peak in the spectral response at

the flexural wavenumber is seen to vary non-linearly with increasing frequency.

Eventually (though not shown in Figure 2.1) as frequency increases, the acoustic

wavenumber intersects with the plate's flexural wavenumber. The frequency at this

intersection is referred to as the coincidence frequency.



32
Recall that spectral components that have supersonic wavenumbers couple well

with the acoustic fluid since the propagating wavenumber is traveling faster than the

acoustic wavenumber. These components are strong radiators of sound.

As can be seen in Figure 2.1, no large spectral responses are seen below

coincidence in the cone-shaped region defined by the acoustic wavenumbers, ±ko.

ko

-k0

Figure 2. 1. Normalized magnitude of the UNRIBBED plate wavenuniber response
versus frequency and wavenumber.
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Figure 2.2 is simply a slice through the normalized wavenumber response given in

Figure 2.1 at a frequency of 500 Hertz and within the wavenumber range of-40 m- 1 to 40

m- 1. The absolute value of the acoustic wavenumber at 500 Hertz is 2.1 m- 1 and the nulls

produced in the magnitude of the wavenumber response, due to vibrational energy being

transferred away from the plate into the fluid, are shown. The large spectral response at

wavenumber, ±10 m- 1, represents the plate's response at the classical fluid-loaded free

wavenumber, kfl.

E

1,3

o 0.5

z

-40 -30 -20 -10 0 10 20 30 40

WAVENUMBER k (1/m)

Figure 2.2. Normalized magnitude response of the UNRIBBED plate for a
fixed frequency of 500 Hertz.

The spectral response of the UNRIBBED plate changes in a predictable manner

with increasing excitation frequency. Figure 2.3 shows the normalized magnitude of the

wavenumber response of the UNRIBBED plate at a frequency of 2,000 Hertz. The location
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of the nulls due to radiation damping have shifted to ±8.3 m- 1 and the peaks in the spectral

response have shifted upward to ±19 m- 1.

E

a,

W

0 0. O.

0.-L
-40 -30 -20 -10 0 10 20 30 40

WAVENUMBER k (1/m)

Figure 2.3. Normalized magnitude response of the UNRIBBED plate for a
fixed frequency of 2000 Hertz.

The periodic BASELINE configuration is shown in Figure 2.4, which again has

been normalized by the maximum modulus in wavenumber for a given frequency. The

frequency range is between 250 Hertz and 5,500 Hertz and the wavenumber range is

-40 m-1 to 40m .-1

The response shown is symmetric about the wavenumber origin and is markedly

patterned. The pattern shows curves of constant zero wavenumber response and curves of

constant relative maximum response. The curves are evenly spaced in wavenumber from

one another, and show the identical dispersive nature as the flexural wavenumber.
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V03

Figure 2.4. Normalized magnitude of the BASELINE plate wavenumber
response versus frequency and wavenumber.

It can be seen from Figure 2.4, that the spectral response decays rapidly for

wavenumbers greater, in absolute value, than the flexural wavenumber. Examining the

term S(k), given in equation (2.27), reveals that the wavenumber response decays, above

the flexural wavenumber, to one over the fourth power in wavenumber. Hence, the region

of interest is spectral components which have wavenumbers less, in absolute value, than

the plate's flexural wavenumber.

Not clearly seen in Figure 2.4, because of the perspective viewing angle used in the

three-dimensional plotting routine, are the nulls in the wavenumber response due to acoustic



36

damping. These nulls are present and are located in the same position as shown in Figure

2.1. These nulls are entirely independent of the attachment of rib-stiffeners to the plate.

Comparing Figure 2.4, the BASELINE response, with Figure 2.1, the

UNRIBBED response, the BASELINE response has large magnitude spectral components

within the cone-shaped region demarcated by the acoustic wavenumbers, ±ko. As

mentioned, these components will be efficient radiators of sound into the far-field.

Figure 2.5, Figure 2.6, and Figure 2.7 show a slice through the normalized

magnitude of the BASELINE plate's wavenumber response, given in Figure 2.4, at the

fixed frequencies, 500 Hertz, 1000 Hertz, and 2000 Hertz, respectively.

In Figure 2.5, notice that nulls--located at wavenumbers ±10.5 m-1-in the

magnitude of the spectral response occur near the spectral peaks at the flexural wave-

numbers ±10.0 m- 1. In Figure 2.6 and Figure 2.7, these nulls have shifted, and since all

other variables, besides frequency, are held constant, the location of the nulls in the

BASELINE plate's wavenumber response are clearly frequency dependent. The presence

of nulls in the wavenumber response which are located near to flexural wavenumbers may

have a significant effect on the structural response of the stiffened plate. The effect may

lead to two traveling flexural waves, rather than one, that travel away from the point of

excitation in a modulated manner. This effect is discussed in more detail in Section 2.4.4.

Shown in Figure 2.7 are relatively large magnitude components of the wavenumber

response, at approximate wavenumbers, ±1.0 m- l , which lie within a region less, in

magnitude, than the acoustic wavenumber, ko = 8.4 m- 1. Hence, these spectral

components will likely be strong radiators of acoustical pressure which were not present in

the UNRIBBED plate configuration. In section 2.4.3 a simple expression is developed for

a periodically stiffened plate which has light fluid-loading which gives wavenumbers for a

relative maximum spectral response. The expression can be used to predict the frequencies

which yield a relatively large spectral response at supersonic wavenumbers.
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Figure 2.5. Normalized magnitude response of the BASELINE plate for a
fixed frequency of 500 Hertz.
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Figure 2.6. Normalized magnitude response of the BASELINE plate for a
fixed frequency of 1000 Hertz.
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Figure 2.7. Normalized magnitude response of the BASELINE plate for a
fixed frequency of 2000 Hertz.

Figure 2.8 shows the normalized magnitude of the ALTERNATE plate's

wavenumber response versus frequency and wavenumber over the same ranges as Figure

2.1 and Figure 2.4. The overall pattern shown is similiar to that shown in Figure 2.4 for

the BASELINE configuration, though fewer curves of constant zero response are seen in

the ALTERNATE configuration than the BASELINE's configuration. The fewer curves of

constant zero response are due to the change in inter-rib spacing and is examined in detail in

section 2.4.3.

The nulls in the magnitude of the normalized spectral response due to acoustic

damping, unlike Figure 2.4, are clearly seen.
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'

Figure 2.8. Normalized magnitude of the ALTERNATE plate wavenumber
response versus frequency and wavenumber.

Again, Figure 2.9, Figure 2.10, and Figure 2.11 are slices through the magnitude

of the normalized wavenumber response of the ALTERNATE plate given in Figure 2.8, at

excitation frequencies of 500 Hertz, 1000 Hertz, and 2000 Hertz. The location of the

spectral peaks and spectral nulls change with frequency, and not surprisingly, with

stiffener geometry.
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Figure 2.9. Normalized magnitude response of the ALTERNATE plate for a
fixed frequency of 500 Hertz.
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Figure 2.10. Normalized magnitude response of the ALTERNATE plate for a
fixed frequency of 1000 Hertz.
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Figure 2.11. Normalized magnitude response of the ALTERNATE plate for a
fixed frequency of 2000 Hertz.

The wavenumber frequency patterns shown in Figure 2.4 and Figure 2.8 are able to

be described by mathematically investigating equation (2.27). The location of the nulls in

the magnitude of the spectral response, as well as the wavenumber location of the relative

maximas shown, can be easily determined.

2.4.2 Effect of Stiffeners on the Flexural Wavenumber

Before discerning the wavenumber frequency pattern, another issue will be briefly

discussed. Figure 2.12 compares the normalized magnitude of the spectral response of the

BASELINE configuration with the UNRIBBED configuration for aftixed wavenumber of

6.0 nr- and a swept excitation frequency range between 100 Hertz and 400 Hertz. The

solid line represents the UNRIBBED fluid-loaded magnitude of the wvenumber response

and the dashed line denotes the BASELINE's response.

Not surprisingly, the additional mass of the rib stiffeners causes the unstiffened

free-bending wavenumber to shift downward in frequency, which is shown in Figure
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2.12. Hence, two independent effects should be noted that change the flexural wave-

number: First, fluid loading changes the free-bending wavenumber; second, the additional

mass of the rib stiffeners alters the bending wavenumber.

"I

ItII UNRIBBED

0.6

z 0.4 I

0.2 -

100 10 260 0300 3W AI

FREOUENCY (Hz)

Figure 2.12. Comparison of the normalized magnitude of the BASELINE and the
UNRIBBED plate frequency response for a fixed wavenumber of 6.0 m-1.

The downward shift in frequency can be predicted mathematically by careful

consideration of equation (2.27).This consideration leads to the type of analysis necessary

to explain the curves of constant zero spectral response seen in Figure 2.4 and Figure 2.8.

Recall that the applied line force is acting at the plate's origin, xo = 0. The following

analysis is only valid for a point of application of the line force such that the exponential

term, e- ikxO, is unity.

For reference, equation (2.27) is repeated below

Y(k)KIF&) (2.27)
I+KIYO(k)
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From the requirement that the line force acts at the origin of the plate, equation

(2.27) simplifies, since FO(k) = F0Y0(k), as

, k ( 1) =KF}[k1 (2.28)()-S(k) Il+K Ir0(k)"

Expanding a few terms of the summation Y0(k), shown above in equation (2.28),

about the origin yields

(k(k) = FS (2.29)
S(k)+KI+Kj {... + S(kkt) + S(k+k1 )

The term shown bracketed, which is multiplied by K1, is much smaller than the

other terms in the denominator of equation (2.29) near the zeroth summation value, n = 0.

The terms S(k--kn) and S(k+kjn) are much greater than S(k), since S(k) is of the order k4.

Hence, their inverse is much smaller and the equation (2.29) will have a maximum when

the approximated denominator goes to zero, S(k) + KI -+ 0.

For simplification, at this point, it will be assumed that the stiffened plate is

unloaded and has zero structural damping. For the present geometery and material

properties, this simplification does not trivialize the analysis, since the loss factor is small

and fluid-loading changes the unloaded flexural wavenumber only slightly.

Substituting the expression for S(k) and Kj into the above yields

m o2

D(k4--k) - = 0.0. (2.30)

Equation (2.30) can be rewritten by substituting in the definition of the in vacuo

free wavenumber kb. The resulting equation may then be solved for the wavenumber,

denoted kb, for which equation (2.30) equals zero.

kD (m + (2.31)
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Hence, for a fixed wavenumber, the mass-per-unit length of a rib-stiffener, m

lowers the frequency of the traveling bending wave as given below

f b (2.32)
b 21

~+ (m /Dt)

In the remaining work, the flexural wavenumber, unless otherwise stated, will be

written as kfl, where it is understood that this wavenumber refers to the fluid-loaded, rib-

stiffened plate's wavenumber.

2.4.3 Analysis of the Periodic Wavenumber-Freauencv Curves

The family of curves shown in Figure 2.4 for the normalized magnitude of the

wavenumber response of the BASELINE design, and Figure 2.8 for the ALTERNATE

design will now be considered.

The curves demarcate a locus of zeros in the magnitude of the wavenumber

response, one which follows the trace of the positive flexural wavenumber, and the other

which follows the negative flexural wavenumber. Equation (2.27) can be written,

neglecting fluid loading, as shown below

- (1-T(k)) (2.33)

where

T(k) KIY0(k)T)-l+KiY0(k)'

0Vo(k) 4 .

nY-- D((k+ktn)4-k )

Apparently, the magnitude of the spectral response will be zero for values of T(k)

equal to unity. Hence, from the definition of T(k), this occurs for values of wavenumber

such that I + KiY0(k) -KIY 0(k).
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The above only can be u-ue if K1YO(k) is very large. Since K1 is constant for a

given frequency and given plate design, it is worthwhile to consider values of wavenumber

for which YO(k) is large.

Certainly, any value of wavenumber for which the denominator of YO(k)

approximately goes to zero will cause YO(k) to be large. Hence, the values of interest are

wavenumbers for which D( (k+kin)4-k }--O.

The above can be immediately solved for real wavenumbers, which make YO(k)

large and hence for which T(k) approximately equals unity,

kn = ±kb ± nki n = 1,2,3, ... (2.34)

Notice that the index above begins with one, not zero, as a careful review of the

previous section indicates that n = 0 does not lead to a wavenumber root for which the

magnitude of the periodically rib-stiffened spectral response goes to zero.

Remember that wavenumber values which are greater, in absolute value, than the

free flexural wavenumber, yield spectral components which rapidly decay with

wavenumber. Therefore, of most interest, is a subset of roots given by equation (2.34),

namely

kj = kb-jkt j = 1,2,3, ..., J (2.35a)

kj = - kb + At JI< INT [ ) k, (2.35b)

kt

Equations (2.35a,b) are significant relationships which may be verified by

considering the locus of zeros in the magnitude of the BASELINE response and the

ALTERNATE response in Figure 2.4 and Figure 2.8, respectively.

The wavenumber associated with the periodic spacing, kt, is fixed and depends

only on the inter-rib spacing, L. It is independent of frequency. Hence, equations (2.35a,b)

are simple translations of the dispersion curve defined by kb. Equation (2.35a) yields the
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wavenumbers that give the curves that proceed from the positive flexural wavenumber;

equation (2.35b) gives the curves that lead away from the negative flexural wavenumber.

The ALTERNATE configuration has a periodic rib spacing half the size of the

BASELINE configuration, which means the wavenumber associated with the periodic

spacing, ki, of the ALTERNATE design is twice as large as the BASELINE's value.

Therefore, as indicated by equations (2.35a,b), the wavenumber distance separating the

curves of constant zero spectral response in Figure 2.8, the ALTERNATE design, are

twice that of the distance shown in the BASELINE design.

Also seen in Figure 2.4 and Figure 2.8 are local maxima which lie very close to,

and follow the shape of, the curves which define zero spectral response. The location of the

relative maxima may be predicted by returning to equation (2.27), which for convenience is

written below

w(k)={ I+KIYo(k) } " (2.27)

Proceeding in the manner just discussed, the wavenumber values of interest, where

equation (2.27) will have maxima, are those wavenumbers for which the bracketed

denominator goes to zero, 1 + K1Y0(k)--O.

For any given summation index, say n = m, a wavenumber may be found which, at

that summation index m, produces a relative maximum in equation (2.27). Other values for

the summation index will be much smaller than the summation term involving ro.

Therefore, we can determine, at a fixed index, the approximated wavenumber response

which produces a relative maximum

_ F0_{ S(k-mk (236
w(-S(k) K 1 + S(k-mk)" (2.36)

near n = m.
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From the above expression, it is easily shown that the magnitude of the spectral

response, %(k), will be large for values of wavenumber such that S(k-mki)+Kl-O.

Substituting in the definition of S(k) and K1 , the following relationship i!, found

(k--mk)4 - k 4= (2.37)

4 (m'/t)W2
where k; = D is defined as the in vacuo stiffener wavenumber.

Hence, in the wavenumber region of most interest, the wavenumbers at which the

magnitude of the periodically rib-stiffened plate's spectral response achieves maxima, are

given by

kj= (k4 + 4)114 -jk t  j = 1,2,3, ..., J (2.38a)

kj =-(k+4) +jkt  J<INT {4"1/4 . (2.38b)

Note, for the particular geometry and material chosen for this investigation, as

given in Table 1.1, kb is much greater than kr. Therefore, as shown in Figure 2.4 and

Figure 2.8, for the BASELINE and ALTERNATE configuration respectively, the relative

maximum in the spectral response is located quite near the curve defining minimum

response. In other applications, however, the relative maximum and minimum spectral

response may be widely separated.

The frequencies at which the wavenumbers given by equation (2.35a) intersect with

those of equation (2.35b) are particularly interesting, as are the frequencies where equation

(2.38a) and equation (2.38b) intersect. In the latter case, Figure 2.4 and Figure 2.8 show a

blending together of two relative maximas into a substantial peak at these intersections.

Consider equation (2.35a) intersecting with equation (2.35b), which means

j=1,2,3, ... ,J
kb- jkt = -kb + ikt
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By substituting in the value for the bending wavenumber, kb, and squaring both

sides, then solving for the angular frequency, the following expression is obtained

r i M.' (2.39)

Substituting the value for the periodic wavenumber, ki, and noting p = i + j, yields

CD1 = (pn)2 4 p = 2,3,4 ... , P (2.40)

P < J + I.

The summation index, p, begins at 2 simply because the region of wavenumber

interest has been restricted to spectral components less than, in absolute value, the flexural

wavenumber.

The angular frequency given by equation (2.40) is precisely the classical value for

the resonant frequencies of a simply-supported strip plate as given in Mierovitch (1967).

In an identical manner, the frequencies for which equation (2.38a) intersects with

equation (2.38b), which produces large spectral peaks within the wavenumber region of

interest, are

Op = (px02 D (241
D4(+( /.) p =2,3,4, ... , P (2.41)

P , J + I.

Again, the form of the above equation is the same as that given by classical resonant

frequency analysis of a simply-supported plate with the additional inclusion of the mass of

a single rib stiffener.

2.4.4 Verification of Wavenumber-Freauencv Relationshills

In the following section, the wavenumber equations just developed, equations

(2.35a,b) and equations (2.38ab), are verified by considering light (AIR) fluid loading on

the BASELINE configuration at fixed frequencies over the the wavenumber range -40 m- 1
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to 40 m- . The first frequency chosen will be that given by. equation (2.40) for p = 2 and

the remaining frequencies will be between and up to the final frequency given at p = 3.

Figure 2.13 is the normalized magnitude of the wavenumber spectrum, for light

fluid-loading, at a frequency of 2,653 Hertz. The reader will recall that this is one of the

frequencies at which equation (2.35a) intersects with equation (2.35b). The value of the

periodic wavenumber, kg, is 10.4 m- 1 and the absolute value of the flexural wavenumber,

kb, is 20. m-1 . Applying equations (2.35ab), it is seen that the zeros in the magnitude of

the wavenumber response are located as predicted. Figure 2.13 illustrates a flat spectral

response between wavenumbers -10.0 m- 1 and 10.0 m- 1, except for the well-defined null

at zero wavenumber. Reviewing Figure 2.13 through Figure 2.18, it is seen that this even

pattern again occurs at the next frequency defined by equation (2.40); that is, p = 3. A

careful look at Figure 2.4 suggests this behavior, where it is shown that the spectra are flat

and even, except for nulls, at the frequencies at which zero-magnitude curves cross.

Increasing frequency from the initial value, 2,653 Hertz, to 2750 Hertz, as shown

in Figure 2.14, causes ridges to develop on either side of a given null boundary. As

frequency continues to increase, from 2750 Hertz to 3400 Hertz, as given in Figure 2.15,

the ridges increase in height.

At a frequency of 3650 Hertz, shown in Figure 2.16, which is the p = 2 value

determined by equation ',.4 1), the ridges are seen :z merge into large, evenly spaced,

spectral peaks. Note well that the peaks lying in the region defined by wavenumbers that

are less, in absolute value, than the acoustic wavenumber, become strong radiators of

sound. At 3,650 Hertz, the acoustic wavenumber is 15.3 m-1; therefore, the spectral peaks

at approximately ±5.0 m- 1 become efficient far-field sound generators.

Figure 2.17 illustrates the magnitude of the wavenumber response at an excitation

frequency of 4,000 Hertz. The relative spectral maximas are seen to be significantly

reduced from those shown in Figure 2.16. The spectrum is also seen to be evening out to a

pattern similiar to that given in Figure 2.13.
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Figure 2.13. Normalized magnitude response of the BASELINE plate for
light fluid-loading (AIR) at the fixed frequency of 2653 Hertz.
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Figure 2.14. Normalized magnitude response of the BASELINE plate for
light fluid-loading (AIR) at the fixed frequency of 2750 Hertz.
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Figure 2.15. Normalized magnitude response of the BASELINE plate for
light fluid-loading (AIR) at the fixed frequency of 3400 Hertz.
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Figure 2.16. Normalized magnitude response of the BASELINE plate for
light fluid-loading (AIR) at the fixed frequency of 3650 Hertz.
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Figure 2.17. Normalized magnitude response of the BASELINE plate for
light fluid-loading (AIR) at the fixed frequency of 4000 Hertz.
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Figure 2.18. Normalized magnitude response of the BASELINE plate for
light luid-loading (AIR) at the fixed frequency of 4146 Hertz.
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The frequency determined from the value p = 3 by equation (2.40) is 4146 Hertz,

and the wavenumber response at this frequency is shown in Figure 2.18. The spectrum

shown is similiar to that of Figure 2.13, although an additional null is seen and the location

of the nulls has changed since the flexural wavenumber has increased.

Both Figure 2.13 and Figure 2.18 illustrate spectral nulls which happen to be close

to the flexural wavenumber. In essence, these nulls appear to split the large spectrum

response at the bending wavenumber into two relatively large components which are close

together in wavenumber.

This effect suggests that the forced vibration response of a periodically stiffened

plate, at certain frequencies, may be governed by two wavenumber components, which are

close together, rather than a single component at the flexural wavenumber.

A spatial beating phenomenon may therefore be present. The beat wavelength will

be the difference of the two wavelengths determined by the two large spectral components.

The phenomenon has been discussed jointly with Keltie (1991), and Keltie investigated in

detail the effect of the beating phenomenon on the structural response of a finite rib-

stiffened flat plate.

2.4.5 Non-Periodic Wavenumber-Frepuency Fiffures

Figure 2.19 and Figure 2.20, which are similar to Figure 2.4 and Figure 2.8

respectively, show the effect of introducing a small change in offset such that periodicity is

removed. A 10% shift in the offset has been introduced. Figure 2.19 illustrates the 10%

shifted BASELINE normalized magnitude response, and Figure 2.20 shows the 10%

shifted ALTERNATE configuratio-"- response.

Immediately noticeable is the disruption of the well-defined pattern in the

magnitude of the spectral response which was seen in the periodic configurations illustrated

in Figure 2.4 and Figure 2.8. The curves that trace out the wavenumbers-defined by

equations (2.35ab) and equations (2.38ab)-are no longer valid. It is seen in Figure
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2.19, for the 10% shifted BASELINE design, additional curves of zero spectral response

are present. Similiarly Figure 2.20, the 10% shifted ALTERNATE configuration, has

additional curves over those shown in Figure 2.8.

""p p

Figure 2.19. Normalized magnitude of the 10% shifted BASELINE plate
wavenumber response versus frequency and wavenumber.

The offset distance here is A = 1.1 (112).

It is also seen in both figures that many more nulls in the magnitude of the

wavenumber response disrupt the flexural wavenumber response.
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Figure 2.20. Normalized magnitude of the 10% shifted ALTERNATE plate
wavenumber response versus frequency and wavenumber.

At this point, a caveat needs to be mentioned in the interpretation of the spurious

spikes in magnitude seen throughout the wavenumber-frequency spectrum in both Figure

2.19 and Figure 2.20.

Care was taken in programming equation (2.26), the general wavenumber

response, to ensure the summation terms converged. The summations are complex-valued

functions, and both the real and imaginary parts were required to converge within a

tolenre of c = 10-8 . Further, the convergence was checked for five terms beyond the

initial term which converged. Even with these precautions, for Figure 2.19 and Figure 2.20

I I
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only, certain wavenumber-frequency combinations did not converge. The values that did

not converge represented a very small percentage of the thousands of values generated to

produce the three-dimensional illustrations.

Since tightening the convergence tolerance criterion slowed the computational

process considerably and increased the programming complexity, the changes were not

incorporated. Convergence never became a problem in any of the other numerical results

used within this investigation. However, the spurious spikes may be due to numerical

errors.

2.4.6 Qualitative Analysis of the Non-Periodic

Wavenumber-Freguency Curves

An interpretation of the additional curves tracing out wavenumbers which give zero

wavenumber response, shown in Figure 2.19 and 2.20, as being definable in terms of the

fundamental spacing variables, such as t, A, t-A, does not seem valid. No equations

similiar to those given by equations (3.35a,b) and equations (3.38ab) were derived. Recall

that the general wavenumber response, for only two sets of rib stiffeners, equation (2.26),

is considerably less tidy than the periodic response, equation (2.27). Equation (2.26) does

not lend itself well to the type of analysis which was performed on the periodic

wavenumber response, equation (2.27).

The effect of non-periodic spacing between the rib stiffeners may be analyzed

qualitatively, though, and Figures 2.19 through Figure 2.22 are meant to do so.

Figure 2.21 and Figure 2.22 illustrate the normalized magnitude of the wavenumber

response for the 10% shifted BASELINE configuration which is 'lightly' fluid-loaded at

frequencies of 2653 Hertz and 4000 Hertz respectively. These figures may be compared to

Figure 2.13 and Figure 2.17 to indicate the effect that the change in offset has on the

BASELINE configuration spectral response.

Notice in Figure 2.21 and Figure 2.22 that the spectral response is no longer

symmetric in wavenumber about the origin. In Figure 2.21, the spectral response
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associated with the positive flexural wavenumber, kb, has dramatically been reduced from

the new offset, relative to the response seen in the unshifted periodic response. Neither

figure shows the behavior seen in the periodic configurations where a null apparently split

the flexural wavenumber components.

The additional null-, seen in Figure 2.21 and Figure 2.22 appear to be evenly spaced

in wavenumber, though, as mentioned, no simple wavenumber expressions were

developed which predicted the location of these nulls.

The lack of symmetry in the wavenumber response is likely due to the

corresponding loss of symmetry of the excitation force with respect to the rib-stiffeners.

For the periodic configurations, the line force was applied beneath a stiffener at the plate's

origin. Hence, the periodic stiffeners were symmetric about the applied excitation. For the

non-periodic configurations, the stiffeners are no longer symmetric about the origin of the

plate. A greater shift in offset, for example a 30% shifted BASELINE configuration, may

produce even less symmetry than the symmetry which is suggested in Figure 2.21 and

Figure 2.22.

For all of the numerical results presented in this chapter, the effect of changing the

cross-sectional area of a given rib-stiffener set, and hence their mass, had negligible effect

on the location of spectral nulls and peaks.

With increasing rib mass, the stiffened plate's flexural wavenumber shifts slightly

lower. Therefore, the nulls, as given by equations (2.35ab), which depend upon the

plate's flexural wavenumber, also shift slightly. Otherwise, the mass of a set of rib

stiffeners affects the magnitude of the spectral components more than the wavenumber

location of these components.
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Figure 2.21. Normalized magnitude response of a 10% shifted BASELINE plate
for a fixed frequency of 2653 Hertz.
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Figure 2.22. Normalized magnitude response of a 10% shifted BASELINE plate
for a freed frequency of 4000 Hertz.
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3. FAR-FIELD ACOUSTIC RADIATION USING

THE METHOD OF STATIONARY PHASE

The inversion integrals, equations (2.1Oa,b), which give the radiated pressure

generated by the stiffened plate's surface, may be evaluated in the far-field- that is, for a

large distance away from the surface, using asymptotic expansion techniques. Introducing

a change of variables, from Cartesian into Cylindrical coordinates, it is seen that the integral

is ideally suited for asymptotic expansion by using a stationary phase approximation.

Bender & Orzag (1978) describe the evaluation of real and complex integrals using

asymptotic analysis by means of Laplace's method, the method of stationary phase, and the

method of steepest descents. The reader is referred to their text for a thorough

understanding of the subject; only a brief mathematical synopsis of the method of stationary

phase will be given here.

3.1 METHOD OF STATIONARY PHASE

The application of the method of stationary phase to obtain the far-field radiated

acoustic pressure from both an infinite beam and an infinite plate has been performed by

Junger & Feit (1986), and is well-documented. The formulation given by Junger & Feit is

for an unstiffened plate. However, note that the form of the plate's wavenumber response,

W (k), ribbed ..r ut'ibbed, is immaterial to the development of the expansion, provided that

the wavenumber response is well behaved at the point of stationary phase. In other words,

the point of stationary phase, denoted k, is determined independently of the wavenumber

response. Hence, the formulation given by Junger & Feit (1986) is valid for the stiffened

plate and may be followed identically.

For convenience, equation (2.1Oa) is rewritten below. Note, the integral given by

equation (2. 10b) is not in a form which can be expanded by the method of stationary phase
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since the exponential argument is not pure imaginary. This is inconsequential since it is

assumed the far-field radiation due to the integral given by equation (2. 1Ob) is negligible.

The far-field implies a large stand-off distance z, therefore the real-valued exponential term

in equation (2. 1Ob) is small.

ref ipo02-(k i 4 zeid.(2Oa

Pa(x,z) = - I w 0 w-(k) e eikxdk. (2. 1Oa)

Ik I 
o_.

The following expressions are defined to clarify the evaluation of the above

integral, equation (2.1 Oa), by the method of stationary phase.

- ipOW2 W (3.1 a)

'F(k) = r -k2 + kx. (3.1b)

Notice that equation (3.lb) is entirely real-valued for supersonic wavenumbers,

which is necessary for the method of stationary phase. A change in variable from Cartesian

coordinates (xz) into polar coordinates (R,e), is now introduced.

With the change in variables and with the substitution of equations (3. 1a,b), the

inversion integral Icoines

P(R,O) = j f(k) eiR P(k) dk (3.2)

where '(k) = cos(O)< k - k2 + k sin 0.

For the particular integral given by equation (3.2), the expansion is of second
d2'V(k)

order, since a 2 - * 0, thus the asymptotic expansion is given (Bender) as
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P(,)-f(i)F(b 2! 11/2 eiR'v(K) ei 7E/ R -4 ~ (3.3)P(R,0) __2 e ,

2 [R 'l"(k)1]

The stationary phase value, k, occurs when the first derivative of P(k) equals zero.

This is the wavenumber for which the integrand is slowly varying over a small range of

integration. Over other ranges of integration, the exponential term in the integrand oscillates

between positive and negative values rapidly (for large values of R). Therefore, the

contribution the integrand has over the latter domain of integration is negligible. The

stationary phase value may be shown to be:

K = ko sinO.

Substituting the above stationary phase value into equation (3.3) and simplifying,

the inversion integral, valid for large values of R and for an applied line force, may be

expressed as

P(RO) - - po2'(k) eiRko(l+i). (3.4)

3.2 VERIFICATION OF FAR-FIELD SOLUTION

Mace (1980a) presented results for the on-axis, far-field sound pressure level

radiated from a fluid-loaded plate stiffened by identical and periodically spaced rib

stiffeners for applied point force excitation. A distance of 1 meter, normal to the plate's

surface, was chosen as an reference distance for the evaluation of the far-field pressure. Of

course, this distance is strictly a reference value, and does not necessarily represent a valid

far-field observation point. The value was chose,. simply for convenience.

The methodology and the numerical examples given by Mace (1980a) have been

used as a verification of the stiffened plate's wavenumber response, given by equation

(2.26), and as a verification of the above asymptotic formula, equation (3.4).
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Mace's formulation assumed point force excitation; however, for the particular far-

field observation point chosen by Mace for numerical calculations, the point-forced and

line-forced wavenumber responses are identical. However, the stationary phase expansions

do differ. Therefore, for the comparisons shown in Figure 3.1 and Figure 3.2 only, the

line-force expansion given above, equation (3.4), was changed to a point-force expansion,

as described in the Appendix.

Figure 3.1 is a comparison of a numerical example given by Mace with the current

analysis for the special case of a single set of identical rib-stiffeners. The excitation was a

lkN point force applied halfway between two adjacent ribs. The geometric and material

values used to generate Figure 3.1 and Figure 3.2 are given in Mace.

In Figure 3.2, two different sets of rib stiffeners were considered and were

positioned such that one set was offset by l-lf the periodic spacing of the other set. In this

manner, which corresponds to two bays between adjacent bulkheads in Mace's analysis,

the offset, A, could be verified.

As can be seen in both figures, the agreement in far-field radiated sound pressure

level is exact. Hence, at this point it can be confidently assumed that equation (2.26) and

subsequently equation (3.4), are correct expressions for the computation of the far-field

acoustic pressure radiated from a fluid-loaded, rib-stiffened plate of infinite extent.

3.3 PERIODIC FAR-FIELD RADIATION

Figure 3.3 compares the far-field sound pressure level radiated from the

BASELINE and UNRIBBED plate at a distance of 1.0 ..aeter normal to the plate's surface

over the frequency range 100 Hertz to 10,000 Hertz. A line force of 1.0 kN is applied at

the origin, xo-=0. Throughout this chapter, as well as in Chapter IV, the location and

magnitude of the applied line force does not change.
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Figure 3.1. Comparison of a numerical result presented by Mace (1980a) with the current
analysis for a single set of identical rib-stiffeners. The excitation here is a 1 kN point force

applied halfway between two adjacent rib-stiffeners.
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Figure 3.2. Comparison of results generated by the methodology of Mace (1980a) and the
current analysis. Two different sets of rib stiffeners are positioned such that one set i5

offset by half of the periodic spacing of the other set.
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Figure 3.3 indicates that the stiffeners have increased the radiated sound at certain

frequencies of excitation. Elsewhere, the radiated sound from the ribbed BASELINE plate

is less, substantially so at certain frequencies, than the UNRIBBED plate. At low

frequencies, the sound pressure levels of both plates are equivalent. Before any

conclusions may be drawn, however, it must be noted that the results shown in Figure 3.3,

and in Figure 3.4, are for a fixed observation point, 1 meter normal to, and directly above,

the excitation force. A change in the observation point may cause a dramatic change in the

level of the radiated pressure from the BASELINE configuration.

Like Figure 3.3, Figure 3.4 compares the ALTERNATE and UNRIBBED plate

radiated sound pressure level. It is seen, below 1000 Hertz, that the rib stiffeners have no

apparent effect on the radiated pressure over that of the UNRIBBED plate. Beyond 1,000

Hertz, the trend of the variations of acoustic pressure with frequency is similar to that

shown in Figure 3.3, with acoustic peaks followed by nulls.

For convenience, the frequency expressions which give the frequencies for

maximum and minimum wavenumber response are written below

= (p)2 4 D(2.40)

p = 2,3,4,

O = (pX)2 q - D -
Dm ) (2.41)

The first four even index frequencies for minimum spectral response for the light

fluid loaded BASELINE configuration, as given by equation (2.40) above, are 662, 2648,

5958, and 10,592 Hertz. For the maximum response, which is given by equation (2.41),

the frequencies are 587, 2348, 5284 and 9395 Hertz. From Figuie 3.3, the pressure nulls

are located at frequencies 541, 2392, 5392, and 9092 Hertz, and the peaks in acoustic

pressure occur at frequencies 467, 2092, 4792, and 8790 Hertz.
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Figure 3.3. Comnparison of the far-field on axis sound pressure level radiated ftrm the
BASELINE and UNRIBBED plate versus frequency at a distance of 1.0 mn.
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Figur 3.4. Comparison of the far-field on axis sound pressure level radiated from the
ALTERNATE and UNRIBBED plate versus fr-equency at a distance of 1.0 mn.
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The difference between the frequencies which are predicted by equations (2.40) and

(2.41), and those which are actually seen in Figure 3.3, are due to fluid-loading effects. For

light fluid-loading (AIR), the frequencies match perfectly. These figures are not shown.

For the ALTERNATE configuration, which has a periodic spacing half that of the

BASELINE configuration, equations (2.35) and (2.40) predict that there will be an upward

shift in frequency of peak and null locations. The shift will be exactly four times above the

location of the peaks and nulls given for the BASELINE plate. Figure 3.4 shows this fre-

quency shift where, below approximately 1,000 Hertz, the radiated pressure from the

ALTERNATE configuration differs little from the UNRIBBED sound pressure level.

Figure 3.3 and Figure 3.4 show results strictly for identical and periodically spaced

rib stiffeners. The effect on far-field radiation of a change in offset, A, such that the

stiffeners are no longer periodic, will be investigated in the next section.

3.4 VARIATION OF OFFSET A

Figure 3.5 is an illustration which conceptualizes the variation of one rib-stiffener

set of offset A, along the plate between a fixed set of rib stiffeners positioned with periodic

spacing 1. For the BASELINE design, the offset varies between 0 < A e 0.6035 meters

and for the ALTERNATE design the offset varies as 0 < A < 0.3175 meters.

In Figure 3.6, the far-field sound pressure level versus changes in offset between

fixed rib stiffeners is shown for frequencies of 250 and 500 Hertz. The stand-off distance

is 1 meter perpendicular to the plate's surface above the origin. At 250 Hertz, the variation

of the sound pressure level with offset is slight, no more than 1 dB. However, at 500

Hertz, large variations in radiated sound pressure level, as much as 20 dB, occur. Notice

for all of the figures shown in this section, Figures 3.6 though 3.9, the far-field radiation

characteristics are symmetric about an offset which is half the periodic spacing t; that is,

A=2.
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Figure 3.5. Illustration showing the variation of offset, A, between a fixed set of stiffeners.
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Figure 3.6. Far-field sound pressure level for the BASELINE configuration versus change
in offset at frequencies 250 and 500 Hertz.
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Figure 3.7 presents the far-field sound pressure level of the BASELINE

configuration versus change in offset at 1,000 Hertz and at 2,000 Hertz. The overall

variation at 1,000 Hertz is greater that that seen at 250 Hertz in Figure 3.6, but is much less

than the dramatic change shown at 500 Hertz. At 2,000 Hertz, the BASELINE plates'

radiated sound pressure level changes, with variations of approximately 12 dB, a number

of times as the offset travels between the fixed set of rib stiffeners.

The far-field sound pressure level for the ALTERNATE design versus change in

offset A, at frequencies of 250 and 500 Hertz, is given in Figure 3.8. In Figure 3.9, the

radiated pressure from the ALTERNATE plate at 1,000 and 2,000 Hertz is shown.

As might be suggested by Figure 3.4, which indicated for frequencies below 1,000

Hertz the ALTERNATE plate behaved acoustically like the UNRIBBED plate, little

variation in sound pressure level is seen in Figure 3.8 at 250 Hertz and at 500 Hertz. Even

at 1,000 Hertz, the radiated far-field pressure from the ALTERNATE plate, illustrated in

Figure 3.9, shows small variation, less than 1 dB, with change in offset At a frequency of

2,000 Hertz, however, approximately 9 dB variations in the magnitude between maximum

and minimum radiated pressure occur as the offset is swept along the plate.

The symmetry of the far-field pressure about the midpoint offset position in the

above figures is reasonable. At the midpoint position, the stiffeners have periodic inter-rib

spacing. Now consider the geometry of the stiffened plate and the location of the applied

force. The stiffeners are symmetric about the applied line force for the variation of the

offset between the fixed stiffeners up to the midpoint position and from the midpoint to the

subsequent stiffener. Therefore, symmetry of the acoustic response about the midpoint

offset position is expected.

The figures further indicate that at certain frequencies of excitation and offset

positions, the stiffeners act as strong radiators of sound.
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Figure 3.7. Far-field sound pressure level for the BASELINE configuration versus change
in offset at frequencies 1000 and 2000 Hertz.
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Figure 3.9. Far-field sound pressure level for the ALTERNATE configuration versus
change in offset at frequencies 1000 and 2000 Hertz.

3.4.1 Periodic Directional Radiation Patterns

Figure 3.10 thru Figure 3.17, which will conclude the far-field analysis given in

this chapter, are directionality patterns which show, in decibels, the difference in far-field

sound pressure level of the the BASELINE and ALTERNATE plate configurations, with

and without periodic offset, relative to the UNRIBBED plate. The directionality refers to

the change in the magnitude of the radiated pressure with variation of polar angle, 0. The

angle varies from -89 degrees to 89 degrees at a fixed radial distance, R, of 1 meter. For all

of the figures, the applied line force is fixed at the plate's origin.

For the UNRIBBED plate, the radiation pattern is omni-directional, showing no

preference for radiation at any angle, for frequencies less than the coincidence frequency.

At coincidence, which for the UNRIBBED plate is approximately 9400 Hertz, the radiated

orulI•I i l InlI ]l l
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pressure becomes strongly directional, with the well-known result (Cremer) of radiation

peaks at ±90 degrees.

Figure 3.10 illustrates the directionality pattern of the BASELINE plate relative to

the UNRIBBED plate at a frequency of 250 Hertz. As might be expected, the low

frequency radiation characteristics of the BASELINE and UNRIBBED plates are similar.

Both configurations radiated pressure equally in all directions at low frequency, with

the ribbed BASELINE being only a moderately stronger radiator than the UNRIBBED

plate.

At 2,000 Hertz, the directionality pattern shown in Figure 3.11 shows a strong

dependence of acoustic radiation on direction. The BASELINE design is no longer omni-

directional. Radiation peaks are seen at approximately ±5 degrees; nulls occur at ±10

degrees. Notice, over much of the angular space, the BASELINE design radiates less

acoustic pressure into the far-field than the UNRIBBED plate.

The ALTERNATE configuration radiation characteristics, given in Figure 3.12,

Figure 3.13, and Figure 3.14 appear to be omni-directional below 1,000 Hertz. Again, this

suggests that the ALTERNATE design behaves like an UNRIBBED plate for frequencies

below 1,000 Hertz, that is, below the first peak frequency predicted by equation (2.40).

At 2,000 Hertz, as shown in Figure 3.14, the radiation pattern of the ALTERNATE

plate relative to the UNRIBBED plate is strongly directional. The overall pattern shown,

with a radiation peak at 0.0 degrees--or normal to the plate's surface-is similar to that

shown at 500 Hertz for the BASELINE plate in Figure 3.15. Notice, in Figure 3.14,

except for a narrow angular region centered about 0.0 degrees, the ALTERNATE plate

radiates less sound than that which is radiated by the UNRIBBED plate for an excitation

frequency of 2,000 Hertz.
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Figure 3.10. Directionality pattern showing the difference in the far-field radiation of the
BASELINE plate relative to the UNRIBBED plate at a frequency of 250 Hertz.
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Figure 3.11. Directionality pattern showing the difference in the far-field radiation of the
BASELINE plate relative to the UNRIBBED plate at a frequency of 2000 Hertz.
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Figure 3.12. Directionality pattern showing the difference in the far-field radiation of the
ALTERNATE plate relative to the UNRIBBED plate at a fiequency of 250 Hertz.
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Figure 3.13. Directionality pattern showing the difference in the far-field radiation of the
ALTERNATE plate relative to the UNRIBBED plate at a frequency of 500 Hertz.



74

30

20

S10

'U0

Ix

-21

-90 -50 0 50 g0

O(DEGREE)

Figure 3.14. Directionality pattern showing the difference in the far-field radiation of the
ALTERNATE plate relative to the UNRI03BED plate at a frquency of 2000 Hertz.

30 1___
I ~ ~~~~BASELINE _________________________

I 30% SHIFTED BASELINE --- -

20_ _

10

ILII

I.- I

-10

-10

-0-50 n so g0
6(DEGREE)

Figure 3.15. Comparison of the directionality patterns of the BASELINE plate and the 3091
shifted BASELINE plate at a frequency of 500 Hertz.
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3.4.2 Non-Periodic Directional Radiation Patterns

Figure 3.15 compares the directionality patterns of the BASELINE plate and a 30%

shifted BASELINE plate, both relative to the UNRIBBED plate, at an excitation frequency

of 500 Hertz. The 30 % shifted BASELINE plate has an offset, A = 1.3(L/2), which

produces overall non-periodic frame spacing.

The radiation patterns for the periodic rib spacing given by the BASELINE and

ALTERNATE configurations all were symmetric in polar angle about the applied line force.

It is apparent then, in Figure 3.15, that the 30% shifted BASELINE configuration, which

has non-periodic rib spacing, is slightly unsymmetrical at 500 Hertz with a narrow

radiation peak which occurs at approximately 1 degree.

In Figure 3.16 a comparison is made between the directionality pattern of the

BASELINE plate and a 10% shifted BASELINE plate, at an excitation frequency of 1,000

Hertz. The offset is, A = 1.1(312), which represents only a moderate change in the rib

spacing from that of entirely periodic arrangement. Notice, however, that this slight change

in offset, from periodic spacing to non-periodic spacing between the ribs, dramatically

changes the plate's radiation characteristics.

The 10% shifted BASELINE configuration is also seen to be entirely

unsymmetrical, with a strong radiation peak, 26 dB greater than the UNRIBBED plate's

level, occurring at approximately -70 degrees.

It is interesting to look at Figure 3.17, which is for a -10% shifted BASELINE

design, as it compares with Figure 3.16. Figure 3.17 shows the directional radiation

pattern of the BASELINE plate compared to a -10% shifted BASELINE plate, at a

frequency of 1,000 Hertz. The offset for the -10% shifted BASELINE is A = 0.9(12). It is

seen that Figure 3.17 is the mirror image of Figure 3.16 and this symmetry is readily

understood if one considers the geometry of the 10% shifted BASELINE and the -10%

shifted BASELINE.
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Figure 3.16. Comnparison of the directionality patterns of the BASELINE plate and the
10% shifted BASELINE plate at a frequency of 1000 Hertz.
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Figure 3.17. Comparison of the directionality patterns of the BASELINE plate and the
-10T shifted BASELINE plate at a frequency of 1000 Hertz
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For the 10% shifted BASELINE, the inter-rib spacing varies, from left to right,

starting from the origin, as 1.1(/2), 0.9(L/2), 1.1(/2), and so on. However, for the -10%

shifted BASELINE case, the spacing varies, left to right, as 0.9(L2), 1.1 (Of2), 0.9(M/2),

and so on. Hence, the inter-rib spacing of the -10% shifted BASELINE design is the

mirror image of the 10% shifted BASELINE design.

From this section and from sections 3.4 and 3.4.1, it appears that the rib-stiffeners

may act as an array of sources radiating pressures that constructively and destructively

interfere in the far-field. The radiation characteristics of the stiffeners depend on the

frequency of excitation and on the offset between one stiffener set and the other. Though

no fundamental relationship between far-field directional radiation characteristics and offset

has been found, many practical applications are suggested by the figures illustrated. A

discussion of such applications is presented in Chapter 5.

Many investigators, such as Gorman (1974), Romonov (1971), and others, have

recognized that the plate's internal structural damping alters the magnitude of the radiated

acoustical pressure from a stiffened plate. Increasing the structural loss factor will decrease

the magnitude of the radiation peaks, while decreasing damping will increase the magnitude

of these radiation peaks. The effect is noted here, though, in typical engineering

applications, a plate material is specified by other considerations and the structural damping

factor is fixed. Hence, it is unlikely that this effect can be exploited.

In the next chapter the acoustic pressure near the surface of the stiffened plate will

be investigated. This will require numerical integration of equations (2.10a) and (2.1Ob);

no simplifying approximation of the radiated acoustic pressure, such as equation (3.4), is

available.
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4. NEAR-FIELD ACOUSTIC RADIATION OBTAINED BY
NUMERICAL INTEGRATION

The near-field acoustic pressure radiated from the line-driven, fluid-loaded, rib-

stiffened plate has been obtained using numerical integration techniques. As Chapter 1

indicated, there have been few investigations into the near-field behavior of stiffened

structures. This lack of research is likely due to difficulty in an analytical evaluation of the

inversion integral, equations (2.10a) and (2.10b), which determines the near-field radiated

pressure.

For an unstiffened plate, contour integration has been used--for example, in Feit

(1985) and Strawderman (1979)-to obtain expressions for the near-field acoustic

pressure. The integration is accomplished by allowing the wavenumber, k, to be complex

and defining a suitable contour of integration. The path of integration must encompass

certain poles which satisfy physical radiation requirements. Such a procedure here would

be quite cumbersome.

Inspection of the summation terms in equation (2.26) reveals that an infinite number

of poles (separated by a distance nki, where n varies over all integers) and branch points

exist and must be considered in defining a suitable contour of integration. Also, any

additional poles associated with equation (2.26) must be considered. The location of these

poles, their type, and, if required, their order must be determined. Hence, numerical

integration was chosen as a means of evaluating the inversion integral.

Rewriting equations (2.1Oa) and (2.10b) here in terms of a positive integration

interval yields
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Note that the general wavenumber response given by equation (2.26) is not

symmetric in wavenumber, and hence equation (4. 1) does not collapse into an inverse

Fourier Cosine transform.

For point force excitation, the integral given by equation (4.1) becomes a double

integral, one which ranges over the wavenumber kx, and the other over wavenumber ky.

The numerical calculations of the double integral are lengthy, with many thousands of

integrand function evaluations required to obtain the acoustic pressure at a single (x,y)

observation point.

4.1 NUMERICAL INTEGRATION

Many integration techniques were investigated for numerically computing equation

(4.1). The focus was on reducing the total number of required evaluations of the integrand

necessary for integral convergence.

Gaussian quadrature was tried; however, due to the oscillatory nature of the

integrand, the method performed poorly. The upper limit of integration was fixed at a

wavenumber two times the flexural wavenumber. Continuing to integrate beyond this value

generates little contribution to the radiated acoustic pressure since the integrand decays very

rapidly beyorl! the flexural wavenumber. Within the chosen range of integration then, both

the real and imaginary parts of the integrand given in equation 4.1 oscillate through many

zeros. For Gaussian quadrature, the integration interval should be broken into sub-intervals

bounded by the integrand's zeros, and within each sub-interval a small point Gaussian

formula should be used. On the other hand, a very large point formula could be used over
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the entire range of integration. Either method, though, introduces a large number of

integrand function evaluations, and for this reason, Gaussian quadrature was not used.

The general wavenumber response, W(k), is independent of the coordinates normal

to and along the plate's surface, the coordinates z and x respectively. Therefore, at a fixed

frequency, it would seem redundant to continually compute W(k) for a change in the x-

coordinate or z-coordinate. It is specifically the wavenumber response, W(k), which

lengthens to the computational time necessary to evaluate the near-field acoustic pressure.

Recall that the general spectral response, equation (2.26), involves five complex and

slowly converging summations. Considering this, an investigation was made into

computing the wavenumber response, W(k), once, for a given frequency, storing the

computed values, then linearly interpolating between the stored wavenumber values. In this

way, changes in the x-coordinate or z-coordinate would not require recomputing the

spectral response, W(k). However, it was found that the response needed to be so finely

sampled in wavenumber to obtain integral convergence, that little was gained in overall

computational speed using linear interpolation.

A Romberg integration technique, Carnahan (1969), was finally chosen to perform

the numerical integration. Romberg integration consists of repeated applications of low-

order integration formulas, for example, the trapezoidal rule, until some initial integral

convergence criterion is met. Then, without any further integrand function evaluations, a

Richardson's extrapolation procedure is used to improve the estimate of the integral by

reducing the approximation error.

Of the numerical integration techniques investigated, Romberg integration proved to

be the simplest to implement and computationally faster than all other methods investigated.

Regardless of chosen technique, the integral given by equation (4.1) becomes much more

difficult to numerically integrate for large values of the x-coordinate or the z-coordinate.
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4.2 NEAR-FIELD AND FAR-FIELD ACOUSTIC REGIONS

The demarcation of the acoustic near-field region and the onset of the far-field

region depends on a number of parameters. The regions cannot be precisely specified at

some fixed distance away from the stiffened plate's upper surface. The thickness of the

plate, the given excitation frequency, and the acoustic medium all affect the region where

the near-field acoustic components have decayed sufficiently so that a stationary phase far-

field approximation becomes valid.

Figure 4.1 compares the near-field, obtained by numerically integrating equation

(4.1), and the far-field approximation, equation (3.4), of the radiated sound pressure level

from the BASELINE plate at 250 Hertz. The observation point moves perpendicularly

away from the plate's surface. The far-field approximation, as expected, gives a poor

estimate of the radiated pressure near-for stand-off distance of 1/3 meter or less--the

stiffened plate's surface.

The comparison of the near-field and far-field calculations, at a frequency of 1,000

Hertz, for the BASELINE plate is given in Figure 4.2. Notice, as frequency increased, the

stationary phase approximation becomes less accurate for greater stand-off distances.

Beyond 1 1/2 meters, though, the magnitude of the acoustic pressure given by numerically

integrating equation (4.2) and by the stationary phase approximation is essentially identical.

However, caution is still warranted in assuming, at 1000 Hertz, the onset of the far-field

region begins at 11/2 meters. Observation points other than directly above the excitation

force, at a similar stand-off distance, may yield strong near-field pressures.

4.3 NEAR-FIELD PRESSURE VARIATION WITH FREQUENCY

Throughout this chapter, unless otherwise stated, the vertical stand-off distance, the

z coordinate, is fixed at 1/3 meter. This value was chosen as typical to stand-off distances

of passive sonar listening devices on Navy ships and submarines, Schloemer (1981).
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Figure 4.1. Comparison of the near-field and far-field radiated pressure from the
BASELINE plate versus stand-off distance at 250 Hertz.

220

NEAR-FIELD
FAR-FIELD ------

CL 200

I-
U

go 
-.

0 1 2 3 4

VERTICAL DISTANCE z(M)

Figure 4.2. Comparison of the near-field and far-field radiated pressure from the
BASELINE plate versus stand-off distance at 1000 Hertz.
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Figure 4.3 and Figure 4.4 show the near-field sound pressure levels radiated from

the BASELINE and ALTERNATE configuration, respectively, compared to the

UNRIBBED plate over a frequency range of 100 Hertz to 10,000 Hertz. The figures are

similar to those given by Figure 3.3 and Figure 3.4, which were in the far-field.

Figure 4.3 the BASELINE configuration, shows few well-defined radiation peaks,

unlike that of the far-field results, and more nulls are given in the near-field calculations

over that of the far-field. The sound pressure level over most of the frequency band is on

the order of or less than the level radiated from the UNRIBBED plate The nulls in acoustic

pressure shown in Figure 4.3 do not directly match those given in Figure 3.3 for the far-

field.

In Figure 4.4, the ALTERNATE plate's near-field radiated pressure is compared to

the UNRIBBED plate's level over the same frequency band. Below 1,000 Hertz, the

addition of rib-stiffeners seems to have little effect on the near-field sound pressure levei.

Beyond 1,000 Hertz, the stiffeners obviously do contribute. Notice that the far-field results

shown in Figure 3.4 are much different than the near-field results illustrated in Figure 4.4.

Again, as in Figure 4.3, the overall sound pressure level of the ALTERNATE

configuration is equal or less than that of the UNRIBBED plate. However, it must be

emphasized that the results shown are for a particular observation point; that is, a di.tance

of 1/3 meter directly above the applied line force. For other observation points, the r'b-

stiffened plate's radiated acoustic pressure may be much greater than that radiated from the

unstiffened plate.

The near-field region appears to be sensitive to changes in offset which yield non-

periodic stiffener spacing. Figure 4.5 compares the near-field sound pressure level from a

50% shifted BASELINE plate configuration to the UNRIBBED plate at a distance 1/3

meter above the plate's surface. The offset here is A = 1.5(./2). Except for the pressure

peak near 1000 Hertz, the location of pressure nulls and relative magnitude peaks have

changed from those shown in Figure 4.3. The pronounced null at approximately 450
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Hertz, seen in the BASELINE configuration, is no longer present in the 50% shifted

BASELINE configuration. The non-p-,odic inter-rib spacing has reduced the sound

pressure level over most of the frequencies above 1,000 Hertz compared to the

UNRIBBED plate and the BASELINE periodically ribbed plate.

4.3.1 Description of Near-Field Surface Pressure Variations

In the following section, a detailed analysis of the variation of near-field radiated

pressure along the mrface of the plate will be presented. Few papers have been published

which have investigated the near-field pressure on the surface of a periodically stiffened

structure. Hence, the following section should provide a beneficial addition to the field of

structural acoustics. Certainly the investigation is warranted, and this section of the

dissertation should eliminate the scarcity of knowledge of near-field sound radiation from

periodic and non-periodic structures.

For all of the figures shown in the following section, the vertical stand-off distance

is fixed at 1/3 meter. The observation point will move above the plate's surface, in the

positive x-direction, from the origin to a distance of 10 or 20 meters away.

The results presented in this section are important in the design of passive sonar

listening devices that are mounted on the external side of a ship or submarine hull. A sonar

array designer seeks a way to reduce the structural radiation from a hull, since the radiation

represents unwanted sound which contaminates an incoming signal. Hence, the interest

here is to determine whether a selection of rib stiffeners-of proper size and inter-rib

spacing-may reduce the radiated noise sensed by the passive sonar device.

Figure 4.6 shows a comparison of the near-field sound pressure level radiated from

the BASELINE and the UNRIBBED plate versus horizontal distance at 1/3 meter above the

plate's surface. The excitation frequency is 250 Hertz. The solid line denotes the

BASELINE pressure and the dashed line is the UNRIBBED plate's radiated pressure.
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Figure 4.6. Near-field sound pressure level radiated from the surface of the BASELINE
and UNRIBBED plate at 250 Her=z The stand-off distance is 11 m.
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Shown in Figure 4.6 are rapid oscillations in radiated pressure for both

configurations. These oscillations are present in the acoustic near-field and quickly decay

with distance away from the plate. The oscillations appear as a rectified sinewave close to

the excitation force and become sinusoidal farther away. The spatial wavelength of the

oscillations in the sinusoidal region is equal to the plate's bending wavelength, Xb = at

250 Hertz. The phenomenon is well-documented, Fahy (1985), for acoustic radiation near

the surface of an unstiffened infinite plate. Some authors have coined the phrase evanescent

field to describe the region near the surface of the plate where the oscillations are

observable. The amplitude of the oscillations decays exponentially with distance away from

the plate, at a rate proportional to e-kflz. The overall sound pressure levels, shown in

Figure 4.6, of the BASELINE and UNRIBBED plate are similar.

Quite surprising is the result given in Figure 4.7, which compares the near-field

sound pressure level along the plate's surface radiated from the BASELINE configuration

and the UNRIBBED plate at an excitation frequency of 500 Herz. Obviously, the

oscillation of the BASELINE plate's radiated pressure is radically different than that of the

UNRIBBED plate. Again, the wavelength of oscillation seen in the UNRIBBED plate

corresponds to the free-bending wavelength. The BASELINE configuration, at 500 Hertz,

shows an oscillation which has a wavelength much greater than that given by the stiffened

plate's bending wavelength. The cause for this difference will be discussed shortly, after

presenting Figure 4.9.

Figure 4.7 also shows a lower sound pressure level, for the BASELINE plate, for

the first 1 1/2 meters along the plate's surface away from the excitation force. In this region

and at this frequency, the rib-stiffened plate is quieter than the unstiffened plate. The rate of

decay of sound pressure level along the BASELINE plate's surface is seen to be greater

than the rate for the UNRIBBED plate.
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Figure 4.8 is a comparison of the near-field radiated pressure from the BASELINE

and UNRIBBED plate at a frequency of 1,000 Hertz. Unlike Figure 4.7 at 500 Hertz, the

sinusoidal oscillations of the BASELINE configuration now have a wavelength equal to the

flexural bending wavelength, and the wavelength is almost identical to that of the

UNRIBBED plate.

However, the level of the radiated pressure of the two plates is very different, with

the BASELINE configuration radiating sound at a level more than 20 dB higher than that of

the UNRIBBED plate for distances beyond 6 meters. Also note, the near-field pressure in

the BASELINE configuration does not decay monotonically away from the applied line

force as has been seen in all previous results. Initially, for approximately the first meter, the

BASELINE plate's near-field decays with distance from the origin. The radiated pressure

then, surprisingly, begins to increase to a relative maximum at 6 meters, and then slowly

tapers off. The rate of decay beyond 6 meters is much less than that shown for the

UNRIBBED plate. It would appear that the near-field acoustic pressure has, at certain

frequencies, directional radiation characteristics as was seen for far-field radiation. No

effort was made to determine the source of this interesting near-field effect.

Figure 4.9 is a comparison of the near-field sound pressure level radiated from the

ALTERNATE and the UNRIBBED plate at an excitation frequency of 1000 Hertz. The

ALTERNATE configuration seems to have radiation features previously seen in the

BASELINE configuration shown in Figure 4.6 and Figure 4.7, at 250 Hertz and 500

Hertz, respectively. The oscillations shown in Figure 4.9 have a wavelength corresponding

to the flexural wavelength, though modulated by a much larger spatial wavelength.

The rate of decay in the magnitude of the radiated acoustic pressure for both

configurations is comparable. However, though less dramatic, the ALTERNATE's near-

field radiated pressure is seen to increase slightly fiom 8 meters to 10 meters; therefore, the

pressure again does not decay monotonically away from the excitation source.
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Figure 4.9. Near-field sound pressure level radiated from the surface of the ALTERNATE
and UNREBBED plate at 1000 Hertz.

Before continuing, the following is noted. Ile BASELINE configuration has a

periodic rib spacing of 0.6035 meters and the ALTERNATE plate had a rib spacing of

0.30175 meters. Reviewing Figure 4.6 through Figure 4.9, it is apparent that no

elementary geometrical correlation exists between the periodic rib spacing and the radiated

acoustic pressure. That is, at a fixed frequency, as acoustic pressure is calculated along the

plate, pressure maximums or minimums do not occur, in a simple manner, as the

observation point slides over a rib-stiffener.

Romanov (1976) has advised that, "to preclude the influence of resonance of the

spacings between beams," the acoustic pressure at each observation point along the plate,

should be fiequency-averaged over an interval which contains several span resonances. It

is assumed the span resonances refer to the resonances of a finite plate simply supported at

each end, and of length equal to the periodic spacing, t. Romanov does present results
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which show relative peaks in radiated pressure above rib-stiffeners. The peaks decay with

distance along the plate.

4.3.2 Analysis of Near-Field Surface Pressure Variations:

Periodic Configurations

In order to explain some of the phenomena illustrated in Figures 4.6 through 4.9,

the integrand and the resulting integration, defined by equation (4.1), will be carefully

considered. This analysis will explain the large wavelength pressure oscillations seen in

Figure 4.7, for the BASELINE plate. The analysis also uncovers the reason for the much

larger radiated pressure of the BASELINE configuration over that for the UNRIBBED

plate at 1000 Hertz.

Figure 4.10 is a plot of the magnitude of the acoustic pressure integrand given in

equation (4.1), showing both the periodic BASELINE configuration (the solid line) and the

UNRIBBED plate (denoted by the dashed line). The stand-off distance was fixed at 1/3

meter, the x-coordinate was fixed at the origin, and the excitation frequency was 500 Hertz.

As stated, the excitation force is applied at the plate's origin. The wavenumber ranges from

-20 m- 1 to 20 m- 1, which is a range that includes the flexural and acoustic wavenumber.

For both configurations, BASELINE and UNRIBBED, the flexural wavenumber has an

absolute value of approximately 10 m-1.

Notice the relative magnitude of the integrand at the flexural wavenumber for the

BASELINE plate compared with the UNRIBBED plate. The integrand for the UNRIBBED

plate has a flexural wavenumber response much greater than that shown for the

BASELINE plate. Recall that Figure 4.7 illustrated interesting behavior of the BASELINE

plate's radiated pressure along the surface of the plate. No oscillations corresponding the

flexural wavelength were seen for the BASELINE plate at 500 Hertz. The reason is

apparent from Figure 4.10; the BASELINE's integrand is quite diminished at this

wavenumber and hence, this region contributes a negligible amount to the integration.
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Another feature shown in Figure 4.10 is a prominent null in the BASELINE integrand at a

wavenumber of :0.4 m- 1. It will be verified shortly that the wide peak in the BASELINE

integrand seen after this null produces the large wavelength oscillations in the BASELINE

radiated pressure seen in Figure 4.7.

Figure 4.11 is a comparison of the magnitude of the integrand given by equation

(4.2) for the BASELINE and UNRIBBED plate at an excitation frequency of 1,000 Hertz.

The ordinate scale has been changed in Figure 4.11, from that of Figure 4.10, to

accommodate the very large wavenumber components, at wavenumbers ±4.0 m-1 , present

in the BASELINE integrand. Notice, that the relative magnitudes of the integrand given by

the BASELINE and UNRIBBED plates at the flexural wavenumber, ±14 m-1 , are

comparable. Therefore, as Figure 4.8 illustrates, both configurations show oscillations in

acoustic pressure with a spatial wavelength equal to the bending wavelength.

For the UNRIBBED plate, the characteristics of the magnitude of the integrand do

not change with frequency. The integrand is symmetric and for, say, positive

wavenumbers, increases steadily with wavenumber up to the acoustic wavenumber, ko,

where the response peaks. The magnitude rapidly decays beyond the acoustic wavenumber

until the flexural wavenumber is reached, where the response again peaks. Beyond the

flexural wavenumber, the magnitude decays very rapidly. Hence, it should be apparent that

the significant contributions to the radiated pressure are generated by supersonic

wavenumbers.

The large spike in the integrand for the BASELINE plate at 1000 Hertz, shown in

Figure 4.11, is the component that generates the substantial increase in radiated pressure

along the BASELINE plate's surface, as shown in Figure 4.8. The integrand for the

stiffened plates is essentially determined by the spectral response, W(k), and the spectral

components of most importance are those which have wavenumbers less, in absolute

value, than the acoustic wavenumber.



94
1000 --- - - -" --

f B ENE! " j" !Bx..ELINEE-. UNR IB °"" ...

z

II

-'00

00

20- -1S' -10 -5 0 S 10 Is 2

WAVENUMBEFR k(1/m)

Figure 4. 10. Comparison of the magnitude of the integrand, equation (4. 1), of the
BASELINE and UYNRIBBED plate at 500 Hertz-

4I

4000

Ii-
2000

II /
I, I

-20 -is -10 -5 0 5 10 Is 20

WAVENUMIER k(1/m)

Figure 4.11. Comparison of the magnitude of the integrand, equation (4.1), of the
BASELINE and UNRIBBED plate at 1000 Hertz.



95

Referring back to Chapter 2, a close look at Figure 2.5, for positive wavenumbers

up to the acoustic wavenumber, ko = 2.1 m- 1 , reveals that the magnitude of the integrand,

shown in Figure 4.10, is determined by the BASELINE plate's wavenumber response.

Similarly, Figure 2.6, an excitation frequency of 1000 Hertz, demonstrates the effect the

wavenumber response has on the magnitude of the integrand given in Figure 4.11. Indeed,

the large wavelength oscillations of the BASELINE plate's near-field radiated pressure,

illustrated in Figure 4.10, are due to the small hump, between wavenumbers 0.4 m- I and

2.0 m-1 , in the BASELINE plate's spectral response, W(k), shown in Figure 2.5.

As the observation point moves along the plate, the increasing value of the x-

coordinate in the integrand in equation (4.1) causes increased oscillation of the exponential

term, eui x. The rapid oscillation of this term, upon integration, tends to reduce spectral

contributions which are slowly varying in slope. Other wavenumber components, such as

spectral peaks, ae sampled and retained. Hence, for this reason, the spectral hump shown

in Figure 2.5 of the BASELINE wavenumber response at 500 Hertz, is seen to propagate

along the plate's surface.

Referring to Figure 2.6 in Chapter 2, a maximum in wavenumber response occurs

just below the acoustic wavenumber, k0 = 4.2 m- 1. This represents the optimal situation

for creating large radiated pressure levels. The integrand given in equation (4.1) shows that

the wavenumber response, W(k), is divided by the term k2]For wavenumbers

near the acoustic wavenumber this term is small, and hence, upon division, the integrand

will be large. The integrand will be even larger if a spectral peak in the wavenumber

response, W(k), is located at the wavenumber near the acoustic wavenumber. This explains

the large magnitude of the BASELINE plate's integrand at 1000 Hertz shown in Figure

4.11 and, therefore, the increase in radiated sound pressure level.

Figure 4.12 through Figure 4.15 are included to complete the examination of the

inversion integral used to obtain the near-field radiated pressure. Figure 4.12 and Figure
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4.13 show the magnitude of the BASELINE plate's sound pressure level, given by

equation (4.1), over small finite intervals of integration in wavenumber. The interval is

one-tenth of a unit wavenumber and the entire range of integration has been subdivided into

100 equal intervals.

For comparison, the magnitude of the acoustic pressure over each interval given by

the UNRIBBED plate is shown by thin lines. In both figures, the location of the interval

which contains the acoustic wavenumber is specified by a dashed line. Figure 4.12 is for

an excitation frequency of 500 Hertz and Figure 4.13 is for an applied excitation at 1000

Hertz. Note that the figures do not give the actual radiated pressure levels since phase has

not been retained from integration interval to interval.

Comparing the magnitudes of the UNRIBBED and BASELINE plate integrands,

shown in Figurx 4.10 and 4.11, it is not surprising that the magnitude of the acoustic

pressure, over each small interval of integration, is of similar shape. At this point it should

be very apparent that subsonic wavenumber components contribute an insignificant amount

to structural radiation.

The dip in the magnitude of the sound pressure seen in Figure 4.12 at the fourth

interval of integration corresponds to the null seen in the BASELINE plate's spectral

response at a wavenumber of 0.4 i--l, Figure 2.5. The steady rise of the sound pressure

level following the dip is predictable from the results shown in Figure 4.10. Notice, at the

final integration interval, which is a interval over the flexural wavenumber, the

UNRIBBED plate magnitude is approximately 12 dB greater than the BASELINE plate's

magnitude. This agrees with the previous results presented in Figure 4.10. The figures

imply that the magnitude of the flexural traveling wave of the BASELINE plate at 500

Hertz is greatly diminished.
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Figure 4.13 illustrates the effect of the large wavenumber response of the

BASELINE plate at a wavenumber of 4.0 m- 1. At the 40th interval of integration-the

interval which contains the 4.0 m- 1 wavenumber-the BASELINE configuration has a

sound pressure level which is approximately 15 dB higher than that given by the

UNRIBBED plate.

Shown in Figure 4.14 and Figure 4.15 are the summed acoustic pressure

magnitudes of the near-field integral over the same interval of integration given in Figure

4.12 and Figure 4.13. These figures present a running sum of the integration-phase has

been retained-and the sound pressure level given at the final interval of integration is the

actual radiated sound pressure level. The figures show that the radiated sound pressure

level for both the stiffened and unstiffened plate are generally determined by components

having a wavenumber less than the acoustic wavenumber.

Recall that Figure 4.14 and Figure 4.15 are for an observation point directly above

the excitation force. At the origin, Figure 4.7 and Figure 4.8 indicate that the near-field

pressure radiated from the BASELINE configuration is less than that radiated from the

UNRIBBED plate; this is confirmed in Figure 4.14 and Figure 4.15.

4.3.3 Analysis of Near-Field Surface Pressure Variations:

Non-Periodic Configurations

The results just presented consider periodic rib spacing only. The following pages

will present a single example which considers a change in the offset, A, such that the inter-

rib spacing becomes non-periodic.

Figure 4.16 shows the normalized magnitude wavenumber response of a 20%

shifted BASELINE plate at an excitation frequency of 1000 Hertz. The offset here is

A- 1.2 (12).
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Figure 4.16. Normalized magnitude wavenumber response of the 20% shifted
BASELINE plate for a fixed frequency of 1000 Hertz.

As can be seen by comparing the Figure 4.16 with the periodic case given in

Chapter 2, Figure 2.6, the new offset has disrupted and reduced the well defined peaks at +

4.0 m- 1. Hence, it is expected that the new offset will reduce the radiated sound pressure

level also.

The integrand resulting from the 20% shifted BASELINE configuration, at an

excitation frequency of 1000 Hertz, is shown in Figure 4.17. Observe that the large peaks

shown in the BASELINE plate's integrand in Figure 4.11, have been reduced.

Figure 4.18 compares the near-field sound pressure level radiated from the

BASELINE, 20% shifted BASELINE, and from the UNRIBBED plate along the plate's

surface at a frequency of 1000 Hertz. The radiated pressure from the BASELINE and

UNRIBBED plate configurations has already been compared in Figure 4.8. These levels

have been included in Figure 4.18 as reference for measuring the effect of the new offset.
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As predicted, the 20% shifted BASELINE plate radiates less sound into the near-

field than does the periodically ribbed BASELINE plate. The non-periodic spacing has

reduced the large spectral components, near the acoustic wavenumber, seen in the periodic

BASELINE configuration, at a frequency of 1000 Hertz. Reducing these components

reduced the overall near-field radiated pressure.

4.4 SENSITIVITY OF NEAR-FIELD PRESSURE TO

PERIODIC INTER-RIB SPACING

To conclude this chapter on near-field radiation, the following sequence of figures,

Figure 4.19 through Figure 4.23, will be presented. This discussion will stress how

sensitive the near-field pressure is to the periodic rib spacing, L. The analysis will be

similar to that given in the previous section, only here the real and imaginary parts of the

integrand, rather than the magnitude, will be considered.

Two different periodic spacings of the rib-stiffeners are investigated, a spacing of

1.207 meters and 1.18 meters. The cross-sectional area of the stiffeners will be the same as

that of the BASELINE configuration. All other parameters remain unchanged. The

excitation frequency is fixed at 500 Hertz. Note that the two spacings differ from one

another by 0.027 m, or approximately 1 inch.

Figure 4.19 shows the real and imaginary parts, solid and dashed line respectively,

of the near-field pressure integrand for the periodic spacing of 1.207 meter. Figure 4.20

gives the real and imaginary parts of the near-field pressure integrand for a periodic spacing

of 1.18 m.

Considering positive wavenumbers, Figure 4.19 indicates, starting from the zero

wavenumber, that both integrand components, real and imaginary, have large negative

values. With increasing wavenumbers, the components cross zero, at approximately 0.4

m l , and become positive. In Figure 4.20, a periodic spacing of 1.18 m, the real

component of the integrand initially has a large negative value and crosses over, again at
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approximately 0.4 m-1, to a positive value. The imaginary term begins positive, crosses

over to a negative value, at approximately 0.12 m-1, and returns to a positive value at the

wavenumber of 0.4 m- 1.

Figure 4.21 and Figure 4.22, similar to Figure 4.12, show the real and imaginary

parts of the radiated pressure for a periodic spacing of 1.207 m and 1.18 m, respectively,

over small finite intervals of integration. As before, the dashed line denotes the interval

which contains the acoustic wavenumber.

Upon comparing Figure 4.21 with Figure 4.19, and Figure 4.22 with Figure 4.20,

it is seen that the sound pressure level contributions from the real and imaginary

components, per interval of integration, follow the shape of the components defined by the

integrand.

The fundamental point to be made, though, is that the actual integration is the sum

of the integration over each interval. It is apparent, then, that negative contributions will

combine with positive contributions, which will reduce the overall summed radiated sound

pressure level.

Hence, a method may exist for reducing the radiated sound pressure level of a

periodically rib-stiffened plate, at afxed frequency and afixed observation point, by

choosing a periodic spacing such that optimal cancelation of components will occur. A rib

spacing would be chosen such that the integrand given by equation (4.1) would generate

large negative spectral regions and positive regions of equivalent size. Upon summing the

real and imaginary components over the entire range of integration, the negative areas

would reduce the contributions from the positive areas, and the net radiated sound pressure

level would be decreased.

Unfor mately, no formula was derived which gives an optimal periodic spacing

for reducing the radiated sound pressure level at a fixed frequency and fixed observation

point.
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Figure 4.19. Real and Imaginary components of the integrand, equation (4.1), for a
periodic rib spacing of 1.207 m. at 500 Hertz.
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Figure 4.23 is a comparison of the summed magnitude of the near-field integral

contributions over each range of integration. The thick lines denote the summed pressure

level of the 1.207 rib spacing and the thin line denotes the 1.18 rib spacing. The actual

radiated sound pressure level, for the excitation frequency of 500 Hertz, is approximately

given by the level shown for the final interval of integration.
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Figure 4.23. Comparison of the summed integral contributions over each
interval of integration for the periodic rib spacing of 1.20 m. and 1. 18 m at a

requency of 500 Hertz

For the periodic rib spacing of 1.207 mn, the radiated sound pressure level is 174

dB, whereas the level given for the periodic rib spacing of 1. 18 ra, is 166 dB. Therefore, a

change of approximately 1 inch reduces the radiated sound pressure level by 8 dB at an

observation point 1/3 in above the applied force.

This chapter has presented, using numerical integration, the near-field acoustic

pressure radiation from periodic and non-periodic stiffened plates. In particular, the

radiated pressure along the surface of the stiffened plate has been analyzed. The stiffeners
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can substantially alter the radiated pressure compared to that radiated from an unstiffened

plate. The magnitude of the stiffened plates' radiated pressure may be greater than or less

than that generated from an unstiffened plate. Obviously, there are a wide variety of

phenomena associated with the attachment of rib-stiffeners to a fluid-loaded plate.
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CHAPTER 5: SUMMARY AND CONCLUSION

The far-field and near-field structural radiation from a rib-stiffened plate of infinite

extent has been examined. Two sets of stiffeners were considered, both having periodic

inter-rib spacing, though one set was allowed to be arbitrarily offset from the other set. The

formulation presented can be easily extended to include additional rib-stiffener sets, each

possessing a different offset. By allowing the stiffeners to be arbitrarily shifted from one

another, composite plate sections may be configured which have non-periodic spacing

between the rib-stiffeners within a given section. Hence, a method now exists for analyzing

the acoustic radiation from true non-periodic structures. Prior to this investigation, very

little has been published on sound radiation from non-periodic structures. Therefore, this

work represents a valuable contribution to the field of structural acoustics.

Past work has focused primarily on far-field radiation from periodic structures,

with many authors idealizing a stiffened structure using a formulation based on propagation

constants. These formulations typically consider an infinite structure which has rigid or

flexible periodic supports. The displacement between a single set of supports is determined

by classical means, and extended on to other regions of the plate by adopting propagation

constants. These formulations do not lend themselves to non-periodic supported structures.

As an aid in interpreting the algebraic manipulations necessary to obtain an explicit

expression for the stiffened plate's spectral response, certain simplifications were made.

The rib-stiffeners were allowed to exert only reactive forces on the plate; angular moments

were neglected. Further, an applied line force was chosen, eliminating any spatial

dependence of sound radiation in a direction parallel to the stiffeners.

It was shown that each additional set of rib-stiffeners generates an additional

equation in the wavenumber domain which must be solved simultaneously to obtain an
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explicit form of the stiffened plate's wavenumber response. With many sets of stiffeners,

the algebra would become cumbersome and would require assistance with a computer.

Two general configurations were investigated, denoted the BASELINE and

ALTERNATE designs. Both had periodically positioned and identical rib-stiffeners. The

ALTERNATE's rib spacing was half that of the BASELINE. Similarly, the mass of the

ALTERNATE stiffeners was about half that of the BASELINE stiffeners. The near-field

and far-field radiation from these stuuctures was compared. The configurations were also

compared to an UNRIBBED plate. Culminating the analysis, the offset of each

configuration was allowed to deviate, and the radiation for non-periodic spacing was

examined.

S.1 WAVENUMBER RESPONSE; PERIODIC CONFIGURATIONS

The special case of the wavenumber response for periodic rib spacing, equation

(2.27), was mathematically examined in great detail As equation (2.32) showed, the

frequency of the free-traveling wave of the stiffened plate is less than that of the unstiffened

plate, due to the additional mass of the rib-stiffeners. Therefore, both fluid-loading and

stiffening change the frequency at which a flexural wave propagates.

It was also shown that the wavenumber response of the periodically stiffened plate

goes to zero for the wavenumbers

kn = kb±kn n = 1,2,3,... (2.34)

Similar relationships were derived for wavenumbers at which the spectral response

has relative maximums; these wavenumbers are given by

km= ±(k,*k)'±_kt m = 1,2,3 ....
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The above relationships were verified, for light fluid-loading (AIR), in Figure 2.13

through Figure 2.18.

The spectral components of most interest were those which coupled with the

acoustic medium and radiate sound. Therefore, of particular interest were components

which have wavenumbers which are less than, in absolute value, the acoustic wavenumber.

These components are vividly shown in Figure 2.4, Figure 2.8, Figure 2.19, and Figure

2.20.

Also notable were the frequencies at which the wavenumber nulls given by equation

(2.35a) intersected with equation (2.35b), and the frequercies for the intersecting maximas

given by equation (2.38a) and equation (2.38b). The former circular frequencies are

COp - (pX) 2 -T p = 2,3,4,... (2.40)

The circular frequencies which yield the largest supersonic spectral components,

below coincidence, are

(OP= (pX)2  Dp = 2,3 ... , P (2.41)
S4(m+(m it))

The form of both of the above frequency equations is similar to that given by

classical resonant frequency analysis, Meirovitch (1967), of a simply-supported strip plate.

The above equations are valid for periodic inter-rib spacing and become invalid for

non-periodic spacing. Qualitative examination of equation (2.26), the general wavenumber

response, was only possible, with the conclusion that even a small change from periodic

spacing disrupts the spectral peaks and nulls, as derived above. The non-periodic spacing

introduces additional nulls and peaks in the spectral response, though the location of these

spect ai components, at this point, is not predictable.
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Finally it was shown that the cross-sectional area of the rib-stiffeners, for the plate

geometry and material properties used during the investigation, had only a small effect on

the location of the spectral nulls and peaks. The stiffeners' structural mass does affect the

magnitude of the spectral peaks, though not in a dramatic fashion.

5.2 FAR-FIELD ACOUSTIC RADIATION

Using the method of stationary phase, an analytical expression was derived giving

the far-field radiation from a fluid-loaded, stiffened plate driven by a harmonic line force.

For light fluid-loading, it was shown that the even index frequencies, given by

equation (2.40) and equation (2.41), predict acoustic nulls and peaks in the radiated far-

field. The observation point, however, was fixed and it was not determined whether the

peaks or nulls varied with observation position.

Large variations in far-field pressure-20 dB at 500 Hertz-were illustrated in

Figure 3.6 for a change in offset. Here, the offset was allowed to vary, from one end to the

other, between a fixed set of stiffeners. It was shown, at certain frequencies of excitation

and offset position, that the stiffeners were strong radiators of sound. However, other

frequencies and offset positions lessened the radiated pressure.

In Figures 3.10 through Figure 3.17, the directional radiation characteristics of the

stiffened plate were shown. Figure 3.14, the ALTERNATE configuration at 2000 Hertz,

indicated that less far-field sound is radiated from the stiffened plate than from the

unstiffened plate over most of the angular radiation space. All of the directional radiation

patterns of the periodic stiffened plate were symmetric in polar angle. For an offset which

introduced non-periodic spacing, the directionality patterns were no longer symmetric. The

stiffeners exhibited radiation characteristics not unlike that which would be seen from an

array of sources radiating pressures which constructively and destructively interfere in the

far-field. A recommendation for future work would be to determine whether an equivalent

source strength for a rib-stiffener could be obtained and used as an acoustical source in an
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array of sources. The directionality patterns given here could then be compared to those

generated from an array of equivalent sources.

Another feature of the radiation characteristics of periodic and non-periodic

stiffened plates, amplified by Figure 3.11, Figure 3.15, and Figure 3.16, is the plate's

ability to focus acoustic radiation within a fairly narrow direction. This may be beneficial in

the design of active sonar devices. Surface ship and submarine silencing may also

benefit from the research presented in Chapter 3. Provided the inter-rib spacing may be

modified, a change in periodic spacing may improve, that is reduce, the far-field radiation

from a surface ship or submarine.

5.3 NEAR-FIELD ACOUSTIC RADIATION

Numerical integration techniques were necessary to obtain the near-field acoustic

radiation. The chosen method was a Romberg integration technique using a simple

trapezoidal rule; Gaussian integration methods performed poorly.

It was shown, in Figure 4.1 and Figure 4.2, that the near-field acoustic pressure

components decay rapidly with distance away from the plate. It was noted, however, that

the demarcation of the near-field and far-field depended on many parameters, and cannot be

specified precisely.

Near-field acoustic pressure versus frequency at a fixed observation point was

shown in Figure 4.3, Figure 4.4, and Figure 4.5. Prominent nulls in acoustic pressure

were illustrated in each figure. The nulls, though, did not match up with those shown for

the far-field radiated pressure. Further, additional nulls were present within the near-field

region than in the far-field. The relative magnitudes of the difference in peak and null

pressures were less in the near-field than in the far-field.

The variation of near-field radiated pressure over the surface was also calculated.

The vertical stand-off distance was fixed and the observation point moved along the surface

of the plate. Clearly shown in all the figures of surface pressure were fairly rapid acoustic
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oscillations due to a propagatirg flexural wave. The amplitude of these oscillations decayed

quickly with vertical distance away from the plate.

At certain frequencies, the stiffened plate's near-field pressure differed greatly from

that of the unstiffened plate. An example is shown in Figure 4.7 for the BASELINE

configuration at 500 Hertz, where the wavelength of the acoustic oscillations is much larger

than that of the unstiffened plate. The difference may be due to the presence of a spatial

'beating' phenomenon. The phenomenon is implied by examining Figure 2.5, the

BASELINE plate's wavenumber response. The figure depicts the flexural response being

split into two components (though one component is of less magnitude than the other)

which are close together in wavenumber. Hence, the wavelength of oscillation seen in

Figure 4.7 may result from taking the difference of the wavenumbers of the two spectral

components shown in Figure 2.5. This conclusion is supported by the work of Keltie

(1991). Keltie examined the near-field radiation from a fluid-loaded, rib-stiffened finite flat

plate. In particular, Keltie analyzed in detail, a beatng phenomenon which arised due to the

presence of rib-stiffeners.

A situation which resulted in very large near-field radiated pressures along the

surface of the plate was observed in the BASELINE configuration at 1000 Hertz. As was

shown in Figure 2.6, the BASELINE plate's wavenumber response at 1000 Hertz, a large

spectral peak existed at a wavenumber just less than the acoustic wavenumber. The

magnitude of the integrand of the inversion integral, equation (4.1), was shown in Figure

4.11 for the BASELINE design at 1000 Hertz. The magnitude was shown to have a

spectral peak 3.5 times greater than that of the UNRIBBED integrand. Therefore, as Figure

4.8 illustrated, the radiated surface pressure of the BASELINE design was, at 1000 Hertz,

much greater than the radiated pressure from the unstiffened plate.

A change in offset, which made the BASELINE plate non-periodic, was also

examined, and was shown to reduce the spectral peaks at 1000 Hertz, seen in Figure 2.6,
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for the periodic BASELINE wavenumber response. Consequently, the surface radiated

pressure was reduced, as indicated in Figure 4.18.

5.4 RECOMMENDATIONS FOR FUTURE ANALYSIS

An immediate recommendation for future investigations would be to consider

broad-band excitation. Romanov (1971) has discussed the need for averaging the near-field

over frequency to illuminate the spatial variation of radiated pressure over the rib-stiffeners.

The calculations would be computer intensive, though not difficult to formulate

mathematically.

The radiation due to a point force needs to be examined in more detail.

Incorporating bending stiffness of the rib-stiffeners would permit a more realistic model.

An ideal investigation would be to analyze the near-field acoustic radiation over an entire

two-dimensional region of the plate's surface for broad-band frequency excitation. The

focus would be to determine a set of stiffener sizes, and attachment positions, such that the

overall radiated pressure, within a selected frequency band, would be less than that for an

unstiffened plate.

The model presented here may also be improved by including the effects of beam

and plate rotary inertia, and, if necessary, shear deformation. Also, bending moments

exerted by the rib-stiffeners onto the plate may be incorporated in to the mathematical

model.

Another recommendation would be to extend the formulation from an infinite rib-

stiffened flat plate to an infinite stiffened cylindrical shell. The formulation would likely

follow the work of Burroughs (1984). Again, the numerical calculations would become

more involved, though the formulation seems tractable.

This study has examined the near-field and far-field sound radiation from periodic

and non-periodic rib-stiffened plates of infinite extent. For the far-field region, an
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analytical solution was obtained by means of a stationary phase approximation. In the near-

field, it was necessary to use numerical integration. For both regions, it has been shown,

that a judicious selection of the attachment location of the rib-stiffeners may reduce,

remarkably at certain frequencies, the radiated sound compared to that generated by an

unstiffened plate.
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7. APPENDIX

POINT FORCE EXCITATION OF A FLUID-LOADED INFINITE PLATE
HAVING TWO SETS OF ATTACHED RIB-STIFFENERS

For an applied point force, the formulation presented in Chapter 2 for line force

excitation differs only slightly. Equation (2.1) is rewritten below for two sets of attached

rib-stiffeners:

D(a2 + a w(x,y) - mo 2w(x,y) -

Pe(x,y) - Pa(x,y) - (PI (x,y) + P2(x,y)) . (A.1)

The Fourier transform of equation (A. 1), adopting the same notation as in

Chapter 2, is

{D(k + k)2 -m=2 ) (kxky) =

Pe(kx,ky) - Pa(kxky) - [ PI(kxky) + P2(kxky) } (A.2)

where kx and ky denote the wavenumbers in, respectively, the x and y direction.

The transforms of the applied pressures, Pe(kx,ky), Pa(kxky), PI(kxky), and

P2 (kxky), are obtained in a manner identical to that given in Chapter 2. For a point force,

the Fourier transform becomes

Pe(kx,ky) = F0 e- ikxx0 e-iky YO. (A.3)

The transform of the acoustic pressure, Pa(kxky), acting on the surface of the

plate, is simply
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Pa(0;kx,ky)= ipo092(kx'ky) -k+1c 2  k0, (A.4a)
2 2-(kx+k)

Pa(O;kx"ky) = 222(kxky)k > k0. (A.4b)

The analysis for obtaining the transformed applied pressure due to both sets of

rib-stiffeners differs little from that given in Chapter 2. For a point force acting on the plate,

however, the bending stiffness of the ribs must be retained. Hence, the spectral dynamic

stiffness, KI and K2, now becomes

4 $
Ellik - m 1()2

K I = - t

4

E2I2k -m m 2

K2 =

The above expressions are substituted back into equation (A.2), as done in Chapter

2, which yields
@0

i(kx,ky)= F(kxky) - KIY(kxky) I W(kx + nkgiky)
n.-oo

00

- K2Y(kx,ky) . W(kx + nkt,ky)eikt nA  (A-5)

where
F(kxky) = Fo e-ikxxO e-iky Yo

S(kx,ky)

and
Y(kxky) = S(kxky)
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2~~ )2 _ MO2 - kOO) k+k

S(kx,ky) =

D(4 +k )2_mo- ) ko.

To obtain an explicit form for the wavenumber response, %(kxky), the identical

manipulations given in section 2.3 of Chapter 2 are used. The wavenumber, ky, is treated

simply as a parameter.

The far-field radiated pressure, due to an applied point force, can be obtained by

asymptotically approximating the Fourier inversion integral using the method of stationary

phase.

z

Y
R

With the above coordinate transformation, the stationary phase integral

approximation becomes

Pa(R,0,0) - -POCAKlE2) e-kOR (A.6)2%rR
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The stationary phase values, Ej, E2, given above are

El= ko sineo cosirj,
and

i2 = ko sin~o sinoo.
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